You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book gives a thorough introduction into object orientated design and programming using C++. At the same time it can be used as a library of very useful programs chosen from the fields of finance, adminstration and statistics. These include programs for calculating loan periods, amortization, least squares fitting, a spelling checker, Gregorian calendar, data compression and encryption, searching and sorting. Basic C++ programming is introduced with simple introductory programs while object-oriented programming in C++ is explained as we develop useful classes. Finally we give an introduction into object orientated design and we demonstrate its power by developing a banking package.
This volume provides a broad overview in the increasingly important field of laser-plasma interactions. With the growth of research into fusion much international effort is being devoted to the problems of inertial confinement. This collection of lectures provides the novice researcher with the context in which current research papers can be understood. Laser Plasma Interactions 5 is one of the first publications to include recently declassified results from the United States inertial confinement fusion research program and as such is an indispensable reference for those wishing to find out about this previously inaccessible research. Presented by 14 speakers of international repute, the emphasis throughout the volume is on inertial confinement fusion. Topics also covered include plasma radiation and transport processes, diagnostic measurements, dense plasmas, high power lasers and X-ray lasers.
Cd-ROM contains: electronic version of AIP Conference Proceedings found in text.
Galena, Illinois, 18-23 September 2005
Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed. The book is intended for advanced beginners in accelerator research, and for experts interested in the mechanisms of direct space charge interaction and their modeling.
The Large Hadron Collider (LHC) is the highest energy collider ever built. It resides near Geneva in a tunnel 3.8m wide, with a circumference of 26.7km, which was excavated in 1983-1988 to initially house the electron-positron collider LEP. The LHC was approved in 1995, and it took until 2010 for reliable operation. By now, a larger set of larger integrated luminosities have been accumulated for physics analyses in the four collider experiments: ATLAS, CMS, LHCb and ALICE.The LHC operates with an extended cryogenic plant, using a multi-stage injection system comprising the PS and SPS accelerators (still in use for particle physics experiments at lower energies). The beams are guided by 1232 ...
None
After a historical consideration of the types and evolution of accelerators the physics of particle beams is provided in detail. Topics dealt with comprise linear and nonlinear beam dynamics, collective phenomena in beams, and interactions of beams with the surroundings. The design and principles of synchrotrons, circular and linear colliders, and of linear accelerators are discussed next. Also technological aspects of accelerators (magnets, RF cavities, cryogenics, power supply, vacuum, beam instrumentation, injection and extraction) are reviewed, as well as accelerator operation (parameter control, beam feedback system, orbit correction, luminosity optimization). After introducing the largest accelerators and colliders of their times the application of accelerators and storage rings in industry, medicine, basic science, and energy research is discussed, including also synchrotron radiation sources and spallation sources. Finally, cosmic accelerators and an outlook for the future are given.