You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book describes the multiple aspects of (i) preparation of the magnetic core, (ii) the stabilization with different coatings, (iii) the physico-chemical characterization and (iv) the vectorization to obtain specific nanosystems. Several bio-applications are also presented in this book. In the early days of Magnetic Resonance Imaging (MRI), paramagnetic ions were proposed as contrast agents to enhance the diagnostic quality of MR images. Since then, academic and industrial efforts have been devoted to the development of new and more efficient molecular, supramolecular and nanoparticular systems. Old concepts and theories, like paramagnetic relaxation, were revisited and exploited, leading to new scientific tracks. With their high relaxivity payload, the superparamagnetic nanoparticles are very appealing in the context of molecular imaging but challenges are still numerous: absence of toxicity, specificity, ability to cross the biological barriers, etc.
"The application of nanotechnology in the biomedical field, known as nanomedicine, has gained much interest in the recent past as a versatile strategy for selective drug delivery and diagnostic purposes. The nanotheranostic approach, which aims to combine both therapeutic and imaging/diagnostic functionalities, is characterized by a strong pluridisciplinarity where the chemistry of materials, bioconjugate chemistry, pharmaceutical technology, drug delivery, imaging, and pharmacology, work together. Nanotheranostics combine simultaneous non-invasive diagnosis and treatment of diseases with the exciting possibility to monitor drug release and distribution in real time; thus offering the opport...
The cutting-edge guide on advancing the science of molecular imaging using nanoparticles Nanoplathform-Based Molecular Imaging provides rationale for using nanoparticle-based probes for molecular imaging, then discusses general strategies for this underutilized, yet promising, technology. It addresses general strategies of particle synthesis and surface chemistry, applications in computed tomography optical imaging, magnetic resonance imaging, ultrasound, multimodality imaging, theranostics, and finally, the clinical perspectives of nanoimaging. This comprehensive volume summarizes the opinions of those in the forefront of research and describes the latest developments by emphasizing fundamentals and initiating hands-on application.
Lanthanides are of great importance for the electronic industries, this new book (from the EIBC Book Series) provides a comprehensive coverage of the basic chemistry, particularly inorganic chemistry, of the lanthanoid elements, those having a 4f shell of electrons. A chapter is describing the similarity of the Group 3 elements, Sc, Y, La, the group from which the lanthanoids originate and the group 13 elements, particularly aluminum, having similar properties. Inclusion of the group 3 and 13 elements demonstrates how the lanthanoid elements relate to other, more common, elements in the Periodic Table. Beginning chapters describe the occurrence and mineralogy of the elements, with a focus on...
As a practical reference guide for designing and performing experiments, this book focuses on the five most common classes of contrast agents for MRI namely gadolinium complexes, chemical exchange saturation transfer agents, iron oxide nanoparticles, manganese complexes and fluorine contrast agents. It describes how to characterize and evaluate them and for each class, a description of the theory behind their mechanisms is discussed briefly to orient the new reader. Detailed subchapters discuss the different physical chemistry methods used to characterize them in terms of their efficacy, safety and in vivo behavior. Important consideration is also given to the different physical properties that affect the performance of the contrast agents. The editors and contributors are at the forefront of research in the field of MRI contrast agents and this unique, cutting edge book is a timely addition to the literature in this area.
This book presents the role of nanoparticles in cancer therapy, emphasizing their innovative applications across treatment, diagnosis and the development of therapeutic strategies. The first section of the book describes the applications of nanoparticles in cancer vaccines and gene therapy. It features discussions on polymeric nanoparticles as nanovaccine carriers, membrane-based nano-vaccines for immunotherapy and gene therapy techniques employing nanoparticles. The second section presents advanced nanomedicine approaches, specifying the role of chemodynamic nanoparticles in cancer theranostics, the application of low-dimensional nanomaterials and emerging strategies against drug resistance...
Nanotechnology has been emerging as an important tool in the nutraceutical and food industries to improve the overall quality of life. Nanotechnology has established a new horizon by bestowing modified properties on nanomaterials and applying them to the production of nanoformulations, nutritional supplements, and the food industry. The Handbook of Nanotechnology in Nutraceuticals highlights the impact of nanotechnology on the food industries. The book focuses on the application of nanotechnology in nutraceuticals and the food industry to improve the overall quality of life. The book also addresses some important applications of nano-nutraceuticals in the treatment of different diseases, suc...
In this book an extensive overview on the results obtained during the last decade and on recent achievements in the study of molecular magnets by means of Nuclear Magnetic Resonance, Muon Spin Rotation, Magnetic Resonance Imaging and Mossbauer techniques is presented. The aim is to introduce the reader to these techniques and to give a general background on their application to molecular spin systems.
Provides a description about biomaterials, classification and fabrication technologies used in the development of nanostructured biomaterials. Provides a brief account of physicochemical attributes of nanoparticles and its role in summarizing applications of nanobiomaterials. Includes an integrated approach that is used to discuss both the biological and engineering aspects of nanostructured biomaterials. Presents an up-to-date and highly structured reference source for students, researchers and practitioners working in biomedical, biotechnological and engineering fields. Proposes novel opportunities and ideas for developing or improving technologies in nanomedicine/nanobiology and nanoremediation.
The tools of nanodiagnostics, nanotherapy, and nanorobotics are expected to revolutionize the future of medicine, leading to presymptomatic diagnosis of disease, highly effective targeted treatment therapy, and minimum side effects. Handbook of Nanophysics: Nanomedicine and Nanorobotics presents an up-to-date overview of the application of nan