You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Liposomes are cellular structures made up of lipid molecules. Important as a cellular model in the study of basic biology, liposomes are also used in clinical applications such as drug delivery and virus studies. - Methods in Liposome Preparation - Physiochemical Characterization of Liposomes
The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids (fats) and the lipid-bilayer component of cell membranes. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies ...
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant todaytruly an essential publication for researchers in all fields of life sciences.* Discusses optical instrumentation for imaging, screening and diagnosis in molecules, tissues, and cells* Covers the development and application of optical probes and techniques for imaging and drug screening* Investigates the structure and dynamics of biomolecular systems, screening and drug discovery, and the diagnosis and treatment of disease
Are there truly fundamental entities in nature? Or are the things that we regard as fundamental in our theories – for example space, time or the masses of elementary particles – merely awaiting a derivation from a new, yet to be discovered theory based on elements that are more fundamental? This was the central question posed in the 2018 FQXi essay competition, which drew more than 200 entries from professional physicists, philosophers, and other scholars. This volume presents enhanced versions of the fifteen award-winning essays, giving a spectrum of views and insights on this fascinating topic. From a prescription for “when to stop digging” to the case for strong emergence, the reader will find here a plethora of stimulating and challenging ideas - presented in a largely non-technical manner - on which to sharpen their understanding of the language of physics and even the nature of reality.
How can fundamental particles exist as waves in the vacuum? How can such waves have particle properties such as inertia? What is behind the notion of “virtual” particles? Why and how do particles exert forces on one another? Not least: What are forces anyway? These are some of the central questions that have intriguing answers in Quantum Field Theory and the Standard Model of Particle Physics. Unfortunately, these theories are highly mathematical, so that most people - even many scientists - are not able to fully grasp their meaning. This book unravels these theories in a conceptual manner, using more than 180 figures and extensive explanations and will provide the nonspecialist with great insights that are not to be found in the popular science literature.
The aim of this book is to present a range of analytical methods that can be used in formulation design and development and focus on how these systems can be applied to understand formulation components and the dosage form these build. To effectively design and exploit drug delivery systems, the underlying characteristic of a dosage form must be understood--from the characteristics of the individual formulation components, to how they act and interact within the formulation, and finally, to how this formulation responds in different biological environments. To achieve this, there is a wide range of analytical techniques that can be adopted to understand and elucidate the mechanics of drug de...
Volume 5 presents recent research on both planar lipid bilayers and liposomes based on their historic and experimental realization. Advances in Planar Lipid Bilayers and Liposomes, Volume 5, continues to include invited chapters on a broad range of topics, covering both main arrangements of the reconstituted system, namely planar lipid bilayers and spherical liposomes. The invited authors present the latest results in this exciting multidisciplinary field of their own research group.Many of the contributors working in both fields over many decades were in close collaboration with the late Prof. H. Ti Tien, the founding editor of this book series. There are also chapters written by some of the younger generation of scientists included in this series. This volume keeps in mind the broader goal with both systems, planar lipid bilayers and spherical liposomes, which is thefurther development of this interdisciplinary field worldwide.* Contributions from newcomers and established and experienced researchers* Exploring theoretically and experimentally the planar lipid bilayer systems and spherical liposomes* This volume is dedicated to mark the Bilayer Lipid Membranes 45th anniversary
Plasmodesmata (PD) are plant-specific intercellular nanopores defined by specialised domains of the plasma membrane (PM) and the endoplasmic reticulum (ER), both of which contain unique proteins, and probably different lipid compositions than the surrounding bulk membranes. The PD membranes form concentric tubules with a minimal outer diameter of only 50 nm, and the central ER strand constricted to ~10-15 nm, representing one of the narrowest stable membrane tubules in nature. This unique membrane architecture poses many biophysical, structural and functional questions. PM continuity across PD raises the question as to how a locally confined membrane site is established and maintained at PD....
Cell Membrane Nanodomains: From Biochemistry to Nanoscopy describes recent advances in our understanding of membrane organization, with a particular focus on the cutting-edge imaging techniques that are making these new discoveries possible. With contributions from pioneers in the field, the book explores areas where the application of these novel techniques reveals new concepts in biology. It assembles a collection of works where the integration of membrane biology and microscopy emphasizes the interdisciplinary nature of this exciting field. Beginning with a broad description of membrane organization, including seminal work on lipid partitioning in model systems and the roles of proteins i...