Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Algorithms in Real Algebraic Geometry
  • Language: en
  • Pages: 602

Algorithms in Real Algebraic Geometry

In this first-ever graduate textbook on the algorithmic aspects of real algebraic geometry, the main ideas and techniques presented form a coherent and rich body of knowledge, linked to many areas of mathematics and computing. Mathematicians already aware of real algebraic geometry will find relevant information about the algorithmic aspects. Researchers in computer science and engineering will find the required mathematical background. This self-contained book is accessible to graduate and undergraduate students.

Real Algebraic Geometry
  • Language: en
  • Pages: 425

Real Algebraic Geometry

  • Type: Book
  • -
  • Published: 2006-11-15
  • -
  • Publisher: Springer

Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovsk...

Real Algebraic Geometry
  • Language: en
  • Pages: 429

Real Algebraic Geometry

The present volume is a translation, revision and updating of our book (pub lished in French) with the title "Geometrie Algebrique Reelle". Since its pub lication in 1987 the theory has made advances in several directions. There have also been new insights into material already in the French edition. Many of these advances and insights have been incorporated in this English version of the book, so that it may be viewed as being substantially different from the original. We wish to thank Michael Buchner for his careful reading of the text and for his linguistic corrections and stylistic improvements. The initial Jb. TEiX file was prepared by Thierry van Effelterre. The three authors participa...

Discrete and Computational Geometry
  • Language: en
  • Pages: 847

Discrete and Computational Geometry

An impressive collection of original research papers in discrete and computational geometry, contributed by many leading researchers in these fields, as a tribute to Jacob E. Goodman and Richard Pollack, two of the ‘founding fathers’ of the area, on the occasion of their 2/3 x 100 birthdays. The topics covered by the 41 papers provide professionals and graduate students with a comprehensive presentation of the state of the art in most aspects of discrete and computational geometry, including geometric algorithms, study of arrangements, geometric graph theory, quantitative and algorithmic real algebraic geometry, with important connections to algebraic geometry, convexity, polyhedral combinatorics, the theory of packing, covering, and tiling. The book serves as an invaluable source of reference in this discipline.

Lectures in Real Geometry
  • Language: en
  • Pages: 285

Lectures in Real Geometry

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Effective Methods in Algebraic Geometry
  • Language: en
  • Pages: 504

Effective Methods in Algebraic Geometry

The symposium "MEGA-90 - Effective Methods in Algebraic Geome try" was held in Castiglioncello (Livorno, Italy) in April 17-211990. The themes - we quote from the "Call for papers" - were the fol lowing: - Effective methods and complexity issues in commutative algebra, pro jective geometry, real geometry, algebraic number theory - Algebraic geometric methods in algebraic computing Contributions in related fields (computational aspects of group theory, differential algebra and geometry, algebraic and differential topology, etc.) were also welcome. The origin and the motivation of such a meeting, that is supposed to be the first of a series, deserves to be explained. The subject - the theory and the practice of computation in alge braic geometry and related domains from the mathematical viewpoin- has been one of the themes of the symposia organized by SIGSAM (the Special Interest Group for Symbolic and Algebraic Manipulation of the Association for Computing Machinery), SAME (Symbolic and Algebraic Manipulation in Europe), and AAECC (the semantics of the name is vary ing; an average meaning is "Applied Algebra and Error Correcting Codes").

Real Algebraic Geometry and Ordered Structures
  • Language: en
  • Pages: 320

Real Algebraic Geometry and Ordered Structures

This volume contains 16 carefully refereed articles by participants in the Special Semester and the AMS Special Session on Real Algebraic Geometry and Ordered Structures held at Louisiana State University and Southern University (Baton Rouge). The 23 contributors to this volume were among the 75 mathematicians from 15 countries who participated in the special semester. Topics include the topology of real algebraic curves (Hilbert's 16th problem), moduli of real algebraic curves, effective sums of squares of real forms (Hilbert's 17th problem), efficient real quantifier elimination, subanalytic sets and stratifications, semialgebraic singularity theory, radial vector fields, exponential funct...

Algorithmic and Quantitative Real Algebraic Geometry
  • Language: en
  • Pages: 238

Algorithmic and Quantitative Real Algebraic Geometry

Algorithmic and quantitative aspects in real algebraic geometry are becoming increasingly important areas of research because of their roles in other areas of mathematics and computer science. The papers in this volume collectively span several different areas of current research. The articles are based on talks given at the DIMACS Workshop on ''Algorithmic and Quantitative Aspects of Real Algebraic Geometry''. Topics include deciding basic algebraic properties of real semi-algebraic sets, application of quantitative results in real algebraic geometry towards investigating the computational complexity of various problems, algorithmic and quantitative questions in real enumerative geometry, new approaches towards solving decision problems in semi-algebraic geometry, as well as computing algebraic certificates, and applications of real algebraic geometry to concrete problems arising in robotics and computer graphics. The book is intended for researchers interested in computational methods in algebra.

Discrete and Computational Geometry
  • Language: en
  • Pages: 394

Discrete and Computational Geometry

The first DIMACS special year, held during 1989-1990, was devoted to discrete and computational geometry. More than 200 scientists, both long- and short-term visitors, came to DIMACS to participate in the special year activities. Among the highlights were six workshops at Rutgers and Princeton Universities that defined the focus for much of the special year. The workshops addressed the following topics: geometric complexity, probabilistic methods in discrete and computational geometry, polytopes and convex sets, arrangements, and algebraic and practical issues in geometric computation. This volume presents some of the results growing out of the workshops and the special year activities. Containing both survey articles and research papers, this collection presents an excellent overview of significant recent progress in discrete and computational geometry. The diversity of these papers demonstrate how geometry continues to provide a vital source of ideas in theoretical computer science and discrete mathematics as well as fertile ground for interaction and simulation between the two disciplines.

Combinatorial and Computational Geometry
  • Language: en
  • Pages: 640

Combinatorial and Computational Geometry

This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.