You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
As Moore's Law and Dennard scaling trends have slowed, the challenges of building high-performance computer architectures while maintaining acceptable power efficiency levels have heightened. Over the past ten years, architecture techniques for power efficiency have shifted from primarily focusing on module-level efficiencies, toward more holistic design styles based on parallelism and heterogeneity. This work highlights and synthesizes recent techniques and trends in power-efficient computer architecture. Table of Contents: Introduction / Voltage and Frequency Management / Heterogeneity and Specialization / Communication and Memory Systems / Conclusions / Bibliography / Authors' Biographies
This book constitutes the refereed proceedings of the Fourth International Conference on High Performance Embedded Architectures and Compilers, HiPEAC 2009, held in Paphos, Cyprus, in January 2009. The 27 revised full papers presented together with 2 invited keynote paper were carefully reviewed and selected from 97 submissions. The papers are organized in topical sections on dynamic translation and optimisation, low level scheduling, parallelism and resource control, communication, mapping for CMPs, power, cache issues as well as parallel embedded applications.
This book constitutes the refereed proceedings of the 19th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2019, held in Pythagorion, Samos, Greece, in July 2019. The 21 regular papers presented were carefully reviewed and selected from 55 submissions. The papers are organized in topical sections on system design space exploration; deep learning optimization; system security; multi/many-core scheduling; system energy and heat management; many-core communication; and electronic system-level design and verification. In addition there are 13 papers from three special sessions which were organized on topics of current interest: insights from negative results; machine learning implementations; and European projects.
Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the ke...
This book constitutes the refereed proceedings of the 11th Asia-Pacific Computer Systems Architecture Conference, ACSAC 2006. The book presents 60 revised full papers together with 3 invited lectures, addressing such issues as processor and network design, reconfigurable computing and operating systems, and low-level design issues in both hardware and systems. Coverage includes large and significant computer-based infrastructure projects, the challenges of stricter budgets in power dissipation, and more.
This book introduces readers to emerging persistent memory (PM) technologies that promise the performance of dynamic random-access memory (DRAM) with the durability of traditional storage media, such as hard disks and solid-state drives (SSDs). Persistent memories (PMs), such as Intel's Optane DC persistent memories, are commercially available today. Unlike traditional storage devices, PMs can be accessed over a byte-addressable load-store interface with access latency that is comparable to DRAM. Unfortunately, existing hardware and software systems are ill-equipped to fully avail the potential of these byte-addressable memory technologies as they have been designed to access traditional sto...
Transactions on HiPEAC aims at the timely dissemination of research contributions in computer architecture and compilation methods for high-performance embedded computer systems. Recognizing the convergence of embedded and general-purpose computer systems, this journal publishes original research on systems targeted at specific computing tasks as well as systems with broad application bases. The scope of the journal therefore covers all aspects of computer architecture, code generation and compiler optimization methods of interest to researchers and practitioners designing future embedded systems. This third issue contains 14 papers carefully reviewed and selected out of numerous submissions...
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book i...
This book describes warehouse-scale computers (WSCs), the computing platforms that power cloud computing and all the great web services we use every day. It discusses how these new systems treat the datacenter itself as one massive computer designed at warehouse scale, with hardware and software working in concert to deliver good levels of internet service performance. The book details the architecture of WSCs and covers the main factors influencing their design, operation, and cost structure, and the characteristics of their software base. Each chapter contains multiple real-world examples, including detailed case studies and previously unpublished details of the infrastructure used to powe...
Hardware acceleration in the form of customized datapath and control circuitry tuned to specific applications has gained popularity for its promise to utilize transistors more efficiently. Historically, the computer architecture community has focused on general-purpose processors, and extensive research infrastructure has been developed to support research efforts in this domain. Envisioning future computing systems with a diverse set of general-purpose cores and accelerators, computer architects must add accelerator-related research infrastructures to their toolboxes to explore future heterogeneous systems. This book serves as a primer for the field, as an overview of the vast literature on accelerator architectures and their design flows, and as a resource guidebook for researchers working in related areas.