You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume constitutes the thoroughly refereed post-conference proceedings of the 9th International Conference on Mathematical Methods for Curves and Surfaces, MMCS 2016, held in Tønsberg, Norway, in June 2016. The 17 revised full papers presented were carefully reviewed and selected from 115 submissions. The topics range from mathematical theory to industrial applications.
This book is a comprehensive introduction to visual computing, dealing with the modeling and synthesis of visual data by means of computers. What sets this book apart from other computer graphics texts is the integrated coverage of computer graphics and visualization topics, including important techniques such as subdivision and multi-resolution modeling, scene graphs, shadow generation, ambient occlusion, and scalar and vector data visualization. Students and practitioners will benefit from the comprehensive coverage of the principles that are the basic tools of their trade, from fundamental computer graphics and classic visualization techniques to advanced topics.
Implicit surfaces offer special effects animators, graphic designers, CAD engineers, graphics students, and hobbyists a new range of capabilities for the modeling of complex geometric objects. In contrast to traditional parametric surfaces, implicit surfaces can easily describe smooth, intricate, and articulatable shapes. These powerful yet easily understood surfaces are finding use in a growing number of graphics applications. This comprehensive introduction develops the fundamental concepts and techniques of implicit surface modeling, rendering, and animating in terms accessible to anyone with a basic background in computer graphics. + provides a thorough overview of implicit surfaces with a focus on their applications in graphics + explains the best methods for designing, representing, and visualizing implicit surfaces + surveys the latest research With contributions from seven graphics authorities, this innovative guide establishes implicit surfaces as a powerful and practical tool for animation and rendering.
This is the only textbook available on multiresolution methods in geometric modeling, a central topic in visualization, which is of great importance for industrial applications. Written in tutorial form, the book is introductory in character, and includes supporting exercises. Other supplementary material and software can be downloaded from the website www.ma.tum.de/primus 2001/.
Since their first appearance in 1974, subdivision algorithms for generating surfaces of arbitrary topology have gained widespread popularity in computer graphics and are being evaluated in engineering applications. This development was complemented by ongoing efforts to develop appropriate mathematical tools for a thorough analysis, and today, many of the fascinating properties of subdivision are well understood. This book summarizes the current knowledge on the subject. The focus of the book is on the development of a comprehensive mathematical theory, and less on algorithmic aspects. It is intended to serve researchers and engineers - both new to the beauty of the subject - as well as experts, academic teachers and graduate students or, in short, anybody who is interested in the foundations of this flourishing branch of applied geometry.
This book constitutes the refereed proceedings of the 10th IMA International Conference on the Mathematics of Surfaces, held in Leeds, UK in September 2003. The 25 revised full papers presented were carefully reviewed and selected from numerous submissions. Among the topics addressed are triangulated surface parameterization, bifurcation structures, control vertex computation, polyhedral surfaces, watermarking 3D polygonal meshed, subdivision surfaces, surface reconstruction, vector transport, shape from shading, surface height recovery, algebraic surfaces, box splines, the Plateau-Bezier problem, spline geometry, generative geometry, manifold representation, affine arithmetic, and PDE surfaces.
In the third paper in this chapter, Mike Pratt provides an historical intro duction to solid modeling. He presents the development of the three most freqently used techniques: cellular subdivision, constructive solid modeling and boundary representation. Although each of these techniques devel oped more or less independently, today the designer's needs dictate that a successful system allows access to all of these methods. For example, sculptured surfaces are generally represented using a boundary represen tation. However, the design of a complex vehicle generally dictates that a sculptured surface representation is most efficient for the 'skin' while constructive solid geometry representati...
Papers from an October 2002 symposium describe research in areas including algorithms, artificial intelligence, computer graphics, computer networks, databases, evolutionary computation, graph theory, image processing, multimedia technology, software engineering, and software performance engineering
GeometricModelingandProcessing(GMP)isabiennialinternationalconference on geometric modeling, simulation and computing, which provides researchers and practitioners with a forum for exchanging new ideas, discussing new app- cations, and presenting new solutions. Previous GMP conferences were held in Pittsburgh (2006), Beijing (2004), Tokyo (2002), and Hong Kong (2000). This, the 5th GMP conference, was held in Hangzhou, one of the most beautiful cities in China. GMP 2008 received 113 paper submissions, covering a wide spectrum of - ometric modeling and processing, such as curves and surfaces, digital geometry processing, geometric feature modeling and recognition, geometric constraint solving...