You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the refereed proceedings of the 4th International Conference on Geometric Modeling and Processing, GMP 2006, held in Pittsburgh, PA, USA in July 2006. The 36 revised full papers and 21 revised short papers presented were carefully reviewed and selected from a total of 84 submissions. All current issues in the area of geometric modeling and processing are addressed and the impact in such areas as computer graphics, computer vision, machining, robotics, and scientific visualization is shown. The papers are organized in topical sections on shape reconstruction, curves and surfaces, geometric processing, shape deformation, shape description, shape recognition, geometric modeling, subdivision surfaces, and engineering applications.
This volume covers some of the most recent and significant advances in computer mathematics. Researchers, engineers, academics and graduate students interested in doing mathematics using computers will find it good reading as well as a valuable reference.
Computational geometry is a borderline subject related to pure and applied mathematics, computer science, and engineering. The book contains articles on various topics in computational geometry based on invited lectures and contributed papers presented during the program on computational geometry at the Morningside Center of Mathematics at the Chinese Academy of Sciences (Beijing). The opening article by R.-H. Wang gives a nice survey of various aspects of computational geometry, many of which are discussed in detail in the volume. Topics of the other articles include problems of optimal triangulation, splines, data interpolation, problems of curve and surface design, problems of shape control, quantum teleportation, and more. The book is suitable for graduate students and researchers interested in computational geometry and specialists in theoretical computer science.
Implicit surfaces offer special effects animators, graphic designers, CAD engineers, graphics students, and hobbyists a new range of capabilities for the modeling of complex geometric objects. In contrast to traditional parametric surfaces, implicit surfaces can easily describe smooth, intricate, and articulatable shapes. These powerful yet easily understood surfaces are finding use in a growing number of graphics applications. This comprehensive introduction develops the fundamental concepts and techniques of implicit surface modeling, rendering, and animating in terms accessible to anyone with a basic background in computer graphics. + provides a thorough overview of implicit surfaces with a focus on their applications in graphics + explains the best methods for designing, representing, and visualizing implicit surfaces + surveys the latest research With contributions from seven graphics authorities, this innovative guide establishes implicit surfaces as a powerful and practical tool for animation and rendering.
This book contains tutorial surveys and original research contributions in geometric computing, modeling, and reasoning. Highlighting the role of algebraic computation, it covers: surface blending, implicitization, and parametrization; automated deduction with Clifford algebra and in real geometry; and exact geometric computation. Basic techniques, advanced methods, and new findings are presented coherently, with many examples and illustrations. Using this book the reader will easily cross the frontiers of symbolic computation, computer aided geometric design, and automated reasoning. The book is also a valuable reference for people working in other relevant areas, such as scientific computi...
The wide diffusion of 3D printing technologies continuously calls for effective solutions for designing and fabricating objects of increasing complexity. The so called "computational fabrication" pipeline comprises all the steps necessary to turn a design idea into a physical object, and this book describes the most recent advancements in the two fundamental phases along this pipeline: design and process planning. We examine recent systems in the computer graphics community that allow us to take a design idea from conception to a digital model, and classify algorithms that are necessary to turn such a digital model into an appropriate sequence of machining instructions.
With 14 chapters written by leading experts and educators, this book covers a wide range of topics from teaching philosophy and curriculum development to symbolic and algebraic manipulation and automated geometric reasoning, and to the design and implementation of educational software and integrated teaching and learning environments. The book may serve as a useful reference for researchers, educators, and other professionals interested in developing, using, and practising methodologies and software tools of symbolic computation for education from the secondary to the undergraduate level.
MATLAB is an interactive system for numerical computation that is widely used for teaching and research in industry and academia. It provides a modern programming language and problem solving environment, with powerful data structures, customizable graphics, and easy-to-use editing and debugging tools. This third edition of MATLAB Guide completely revises and updates the best-selling second edition and is more than 30 percent longer. The book remains a lively, concise introduction to the most popular and important features of MATLAB and the Symbolic Math Toolbox. Key features are a tutorial in Chapter 1 that gives a hands-on overview of MATLAB; a thorough treatment of MATLAB mathematics, inc...
The book presents 81 papers referring to the properties and applications of technologically important materials. Topics covered include material characterization, environmental impact, probabilistic assessment, failure analysis, vibration analysis, AI-based predictions, conceptual models, thermo-mechanical properties, numerical models, design and simulation, industrial performance and failure analysis. Keywords: Laminated Sandwich Shell, Polymer Nanocomposite, Cellular Glass Foam, Porous Spherical Shells, Cracks Between Dissimilar Materials, Soil Stabilization, Dynamic Strain Aging, Composite Plates, Recycled Concrete Aggregates, Preparation & Characterization of Nanoparticles, Auxetic Mater...
The central problem considered in this introduction for graduate students is the determination of rational parametrizability of an algebraic curve and, in the positive case, the computation of a good rational parametrization. This amounts to determining the genus of a curve: its complete singularity structure, computing regular points of the curve in small coordinate fields, and constructing linear systems of curves with prescribed intersection multiplicities. The book discusses various optimality criteria for rational parametrizations of algebraic curves.