You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
For many years, the related fields of molten salts and ionic liquids have drifted apart, to their mutual detriment. Both molten salts and ionic liquids are liquid salts containing only ions - all that is different is the temperature! Both fields involve the study of Coulombic fluids for academic and industrial purposes; both employ the same principles; both require skilled practitioners; both speak the same language; all then that is truly different is their semantics, and how superficial is that? The editors of this book, recognising that there was so much knowledge, both empirical and theoretical, which can be passed from the molten salt community to the ionic liquid community, and vice ve...
Several state-of-the-art applications of molten salts are presented, such as metal-molten salt systems, room temperature glass formation, and room temperature melts. Several recent examples of applications highlight the importance of molten salts in various industries (batteries, pyrochemical reprocessing of nuclear fuel, synthesis and catalysis). The basic concepts of the structure, dynamics, electrochemistry, interfacial and thermodynamic properties are detailed and relevant experimental methods described. Such fundamental concepts are essential for an in-depth understanding of the physicochemical properties of molten salts in general, including metal-molten salts, glass forming and low temperature melts. Experimental methods for investigating structural, dynamical, electrochemical thermodynamical and interfacial properties are detailed, as also are techniques for data collection and analysis. Scientists, engineers and technologists will find the volume a valuable reference source covering a wide spectrum of fundamental concepts and modern technologies.
This book contains the lecture notes for the NATO Advanced Research Workshop on th Green Industrial Applications of Ionic Liquids held April 12th_16 , 2000 in Heraklion, Crete, Greece. This was the fIrst international meeting devoted to research in the area of ionic liquids (salts with melting points below 100 0c), and was intended to explore the promise of ionic liquids as well as to set a research agenda for the fIeld. It was the fIrst international meeting dedicated to the study and application of ionic liquids as solvents, and forty-one scientists and engineers from academia, industry, and government research laboratories (as well as six industry observers and four student assistants) me...
It is hard to overstate the importance of electrochemistry in the modern world: the ramifications of the subject extend into areas as diverse as batteries, fuel cells, effluent remediation and re-cycling, clean technology, elect- synthesis of organic and inorganic compounds, conversion and storage of solar energy, semiconductor processing, material corrosion, biological electron transfer processes and a wide range of highly specific analytical techniques. The impact of electrochemistry on the lives of all of us has increased immeas- ably, even in recent years, but this increase has not been reflected in the level or content of courses taught at universities, many of which portray the subject...
The traditional use of organic colorants is to impart color to a substrate such as textiles, paper, plastics, and leather. However, in the last five years or so organic colorants have become increasingly important in the high technology (hi-tech) industries of electronics and particularly reprographics. In some of these reprographics applications the organic colorant is used in its traditional role of imparting color to a substrate, typically paper or plastic. Examples are dyes for ink-jet printing, thermally transferable dyes for thermal transfer printing, and dyes and pigments for colored toners in photocopiers and laser printers. In other applications it is a special effect of an organic ...
One of the key aspects of this volume is to cut across the traditional taxonomy of disciplines in the study of alloys. Hence there has been a deliberate attempt to integrate the different approaches taken towards alloys as a class of materials in different fields, ranging from geology to metallurgical engineering. The emphasis of this book is to highlight commonalities between different fields with respect to how alloys are studied. The topics in this book fall into several themes, which suggest a number of different classification schemes. We have chosen a scheme that classifies the papers in the volume into the categories Microstructural Considerations, Ordering, Kinetics and Diffusion, Magnetic Considerations and Elastic Considerations. The book has juxtaposed apparently disparate approaches to similar physical processes, in the hope of revealing a more dynamic character of the processes under consideration. This monograph will invigorate new kinds of discussion and reveal challenges and new avenues to the description and prediction of properties of materials in the solid state and the conditions that produce them.
This book provides an overview of the current and emerging industrial applications of ionic liquids, covering the core processes, the practical implementation and technical challenges involved, and exploring potential future directions for research and development. The introductory chapter describes the unique physical and chemical properties of ionic liquids, and illustrates the vast potential for application of these materials across the industrial landscape. Following this, individual chapters written by leading figures from industry and academia address specific processes and products, such as the development of a new chloroaluminate ionic liquid as an alkylation catalyst and a new class of capillary gas chromatography (GC) columns with stationary phases based on ionic liquids. Over the past twenty years, ionic liquids have moved from being considered as mere academic curiosities to having genuine applications in fields as wide-ranging as biotechnology, biorefineries, catalysis, pharmaceuticals, renewable fuels, and sustainable energy. This book highlights several commercial products and processes that use or will soon be using ionic liquids.
Compares and contrasts the structure and chemistry of boron clusters, carbon clusters, and carboranes and their derivatives. Honors the pioneering works of William Lipscomb.
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe and beyond. It features contributions presented at the 7th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2019), which was held on August 27–30, 2019 at Lviv Polytechnic National University, and was jointly organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key findings on material properties, behavior, and synthesis. This book’s companion volume also addresses topics such as nano-optics, energy storage, and biomedical applications.
Expanded, revised and updated here, this detailed guide is truly unique, giving accurate metric equivalents and conversion factors for no fewer than 10,000 scientific units with detailed descriptions of over 2,000. It covers the whole spectrum of science, technology and medicine, and deals with US, British, conventional metric, historic and SI units. The pocket-sized format and slot-in user guide bookmark makes it handy and user-friendly, a great time-saver, and a perfect addition to any research department, engineers , scientists or students library.