You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Explaining what CWDM is, how it is achieved, and why it should be deployed, Coarse Wavelength Division Multiplexing: Technologies and Applications merges coverage of isolated aspects of Coarse Wavelength Division Multiplexing (CWDM) traditionally found as device-related or specific system topics. Emphasizing cost savings and performance enhancement, the book integrates information on component issues, system architectures, concepts for extensions and upgrades, as well as practical applications into a comprehensive, single-volume resource. Beginning with a summary of the ITU-T standards defining CWDM, the book addresses the three essential component classes, optical fibers, transceivers, and ...
Optical Methods of Measurement: Wholefield Techniques, Second Edition provides a comprehensive collection of wholefield optical measurement techniques for engineering applications. Along with the reorganization of contents, this edition includes a new chapter on optical interference, new material on nondiffracting and singular beams and their applications, and updated bibliography and additional reading sections. The book explores the propagation of laser beams, metrological applications of phase-singular beams, various detectors such as CCD and CMOS devices, and recording materials. It also covers interference, diffraction, and digital fringe pattern measurement techniques, with special emp...
Assembling an international team of experts, this book reports on the progress in the rapidly growing field of monolithic micro- and nanoresonators. The book opens with a chapter on photonic crystal-based resonators (nanocavities). It goes on to describe resonators in which the closed trajectories of light are supported by any variety of total internal reflection in curved and polygonal transparent dielectric structures. The book also covers distributed feedback microresonators for slow light, controllable dispersion, and enhanced nonlinearity. A portion of coverage is dedicated to the unique properties of resonators, which are extremely efficient tools when conducting multiple applications.
Enterprise Architecture A to Z examines cost-saving trends in architecture planning, administration, and management. The text begins by evaluating the role of Enterprise Architecture planning and Service-Oriented Architecture (SOA) modeling. It provides an extensive review of the most widely-deployed architecture framework models, including The Open Group Architecture and Zachman Architectural Frameworks, as well as formal architecture standards. The first part of the text focuses on the upper layers of the architecture framework, while the second part focuses on the technology architecture. Additional coverage discusses Ethernet, WAN, Internet communication technologies, broadband, and chargeback models.
Photonic MEMS devices represent the next major breakthrough in the silicon revolution. While many quality resources exist on the optic and photonic aspect of device physics, today’s researchers are in need of a reference that goes beyond to include all aspects of engineering innovation. An extension on traditional design and analysis, Photonic MEMS Devices: Design, Fabrication, and Control describes a broad range of optical and photonic devices, from MEMS optical switches and bandgap crystal switches to optical variable attenuators (VOA) and injection locked tunable lasers. It deals rigorously with all these technologies at a fundamental level, systematically introducing critical nomenclature. Each chapter also provides analysis techniques, equations, and experimental results. The book focuses not only on traditional design analysis, but also provides extensive background on realistic simulation and fabrication processes. With a clear attention to experimental relevance, this book provides the fundamental knowledge needed to take the next-step in integrating photonic MEMS devices into commercial products and technology.
The remarkable development of organic thin film transistors (OTFTs) has led to their emerging use in active matrix flat-panel displays, radio frequency identification cards, and sensors. Exploring one class of OTFTs, Organic Field-Effect Transistors provides a comprehensive, multidisciplinary survey of the present theory, charge transport studies, synthetic methodology, materials characterization, and current applications of organic field-effect transistors (OFETs). Covering various aspects of OFETs, the book begins with a theoretical description of charge transport in organic semiconductors at the molecular level. It then discusses the current understanding of charge transport in single-cry...
The potential of photonic signal processing (PSP) to overcome electronic limits for processing ultra-wideband signals, provide signal conditioning that can be integrated in line with fiber optic systems, and improve signal quality makes this technology extremely attractive for improvement in receiver sensitivity performance. Spanning the current transitional period, Photonic Signal Processing: Techniques and Applications addresses the merging techniques of processing and manipulating signals propagating in the optical domain. The book begins with a historical perspective of PSP and introduces photonic components essential for photonic processing systems, such as optical amplification devices...
Focusing on the unresolved debate between Newton and Huygens from 300 years ago, The Nature of Light: What is a Photon? discusses the reality behind enigmatic photons. It explores the fundamental issues pertaining to light that still exist today. Gathering contributions from globally recognized specialists in electrodynamics and quantum optics, the book begins by clearly presenting the mainstream view of the nature of light and photons. It then provides a new and challenging scientific epistemology that explains how to overcome the prevailing paradoxes and confusions arising from the accepted definition of a photon as a monochromatic Fourier mode of the vacuum. The book concludes with an array of experiments that demonstrate the innovative thinking needed to examine the wave-particle duality of photons. Looking at photons from both mainstream and out-of-box viewpoints, this volume is sure to inspire the next generation of quantum optics scientists and engineers to go beyond the Copenhagen interpretation and formulate new conceptual ideas about light–matter interactions and substantiate them through inventive applications.
Suitable as either a student text or professional reference, Lightwave Engineering addresses the behavior of electromagnetic waves and the propagation of light, which forms the basis of the wide-ranging field of optoelectronics. Divided into two parts, the book first gives a comprehensive introduction to lightwave engineering using plane wave and then offers an in-depth analysis of lightwave propagation in terms of electromagnetic theory. Using the language of mathematics to explain natural phenomena, the book includes numerous illustrative figures that help readers develop an intuitive understanding of light propagation. It also provides helpful equations and outlines their exact derivation...
Reflecting rapid growth in research and development on organic/polymeric electronic and photonic materials and devices, Introduction to Organic Electronic and Optoelectronic Materials and Devices provides comprehensive coverage of the state-of-the-art in an accessible format. The book presents fundamentals, principles, and mechanisms complem