You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nanomaterial science has received increasing attention over the last twenty years. As more and more applications are discovered in medical sciences, physics, chemistry, polymer science, material science and engineering, there is a growing need for a basic understanding of nanoparticle interactions and their role in the thermodynamic and kinetic stability of nanodispersions. "Nanodispersions: Interactions, Stability and Dynamics" collects research in nanodispersion interactions and stability by the distinguished Eli Ruckenstein and his research group at SUNY-Buffalo. This book provides valuable insight into current investigations of nanotechnology.
The topics discussed in this text range from quasi-static problems to dynamic problems, and are divided into 15 groups, such as: cohesion/cracking; wave propagation; and quasi-static behaviour. Each group contains theoretical, experimental and computational approaches by researchers.
The AACR Annual Meeting is a must-attend event for cancer researchers and the broader cancer community. This year's theme, "Delivering Cures Through Cancer Science," reinforces the inextricable link between research and advances in patient care. The theme will be evident throughout the meeting as the latest, most exciting discoveries are presented in every area of cancer research. There will be a number of presentations that include exciting new data from cutting-edge clinical trials as well as companion presentations that spotlight the science behind the trials and implications for delivering improved care to patients. This book contains abstracts 2697-5293 presented on April 19-20, 2016, at the AACR Annual Meeting.
These 38 papers from the April 2000 symposium study granular structure, granular flows, nonlinear waves in granular media, vibrated and rotated granular media, and stress distributions. Topics include jamming in liquids and granular materials, nuclear magnetic resonance studies of granular flows, the blueprint of a concept for a nozzle- free inkjet printer, mixing and segregation processes in a Turbula blender, persistence of granular structure during die compaction of ceramic powders, and humidity-induced cohesion effects in granular media. c. Book News Inc.
This unique and encyclopedic reference work describes the evolution of the physics of modern shock wave and detonation from the earlier and classical percussion. The history of this complex process is first reviewed in a general survey. Subsequently, the subject is treated in more detail and the book is richly illustrated in the form of a picture gallery. This book is ideal for everyone professionally interested in shock wave phenomena.
Fullerenes: From Synthesis to Optoelectronic Properties covers a host of topics in organic synthesis, photo- / radiation-chemistry, electron donor-acceptor interaction, supramolecular chemistry, and photovoltaics. The book reviews the state-of-the-art discoveries in these areas of "Fullerene Research" and presents selected examples to prove the potential of fullerenes as multifunctional moieties in well-ordered multicomponent composites. Fullerenes: From Synthesis to Optoelectronic Properties appeals to upper-level undergraduates, graduates, researchers, and professionals in the fields of condensed matter physicists; materials scientists; electrochemists; biochemists; solid-state, physical, organic, inorganic, and theoretical chemists; chemical, electrical, and optical engineers.
Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.