You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book focuses on the development of Melnikov-type methods applied to high dimensional dynamical systems governed by ordinary differential equations. Although the classical Melnikov's technique has found various applications in predicting homoclinic intersections, it is devoted only to the analysis of three-dimensional systems (in the case of mechanics, they represent one-degree-of-freedom nonautonomous systems). This book extends the classical Melnikov's approach to the study of high dimensional dynamical systems, and uses simple models of dry friction to analytically predict the occurrence of both stick-slip and slip-slip chaotic orbits, research which is very rarely reported in the existing literature even on one-degree-of-freedom nonautonomous dynamics.This pioneering attempt to predict the occurrence of deterministic chaos of nonlinear dynamical systems will attract many researchers including applied mathematicians, physicists, as well as practicing engineers. Analytical formulas are explicitly formulated step-by-step, even attracting potential readers without a rigorous mathematical background.
This book focuses on the development of Melnikov-type methods applied to high dimensional dynamical systems governed by ordinary differential equations. Although the classical Melnikov's technique has found various applications in predicting homoclinic intersections, it is devoted only to the analysis of three-dimensional systems (in the case of mechanics, they represent one-degree-of-freedom nonautonomous systems). This book extends the classical Melnikov's approach to the study of high dimensional dynamical systems, and uses simple models of dry friction to analytically predict the occurrence of both stick-slip and slip-slip chaotic orbits, research which is very rarely reported in the exi...
Annotation Consisting primarily of contributions written by engineers from Europe, Asia, and the US, this volume provides a general methodology for describing, solving, and analyzing discontinuous systems. The focus is on mechanical engineering problems where clearances, piecewise stiffness, intermittent contact, variable friction, or other forms of discontinuity occur. Practical applications include vibration absorbers, percussive drilling of hard materials, and dynamics of metal cutting. Of likely interest to new and experienced researchers working in the field of applied mathematics and physics, mechanical and civil engineering, and manufacturing. Lacks a subject index. Annotation copyrighted by Book News, Inc., Portland, OR.
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
A collection of especially written articles describing the theory and application of nonlinear dynamics to a wide variety of problems encountered in physics and engineering. Each chapter is self-contained and includes an elementary introduction, an exposition of the state of the art, as well as details of recent theoretical, computational and experimental results. Included among the practical systems analysed are: hysteretic circuits, Josephson circuits, magnetic systems, railway dynamics, rotor dynamics and nonlinear dynamics of speech. This book provides important information and ideas for all mathematicians, physicists and engineers whose work in R & D or academia involves the practical consequences of chaotic dynamics.
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik
The book provides a self-contained introduction to the mathematical theory of non-smooth dynamical problems, as they frequently arise from mechanical systems with friction and/or impacts. It is aimed at applied mathematicians, engineers, and applied scientists in general who wish to learn the subject.
None
This book, which presents results in nonlinear dynamical systems from the physical and engineering sciences, has a fractal-like construction: Each of the 17 chapters reviews the present status of research activities from the field under consideration, first by providing the reader with an elementary introduction to the topic, then presenting the latest concepts, and finally introducing theoretical, computational or experimental results. The general construction of the book is also presented in a similar manner - starting with the outline of new theoretical achievements and finishing with various problems relevant to the fields of electrical and electronics engineering, mechanical engineering and biomechanical engineering. The new aspects and results found in the special systems taken from electrical, mechanical and biomechanical engineering enrich and increase the general level of understanding the dynamical behaviour of physical systems and show many of their universal properties.