You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The last decade has seen a rapid growth in our understanding of the cognitive systems that underlie mathematical learning and performance, and an increased recognition of the importance of this topic. This book showcases international research on the most important cognitive issues that affect mathematical performance across a wide age range, from early childhood to adulthood. The book considers the foundational competencies of nonsymbolic and symbolic number processing before discussing arithmetic, conceptual understanding, individual differences and dyscalculia, algebra, number systems, reasoning and higher-level mathematics such as formal proof. Drawing on diverse methodology from behavio...
This collection presents significant contributions from an international network project on mathematical cultures, including essays from leading scholars in the history and philosophy of mathematics and mathematics education. Mathematics has universal standards of validity. Nevertheless, there are local styles in mathematical research and teaching, and great variation in the place of mathematics in the larger cultures that mathematical practitioners belong to. The reflections on mathematical cultures collected in this book are of interest to mathematicians, philosophers, historians, sociologists, cognitive scientists and mathematics educators.
The last decade has seen a rapid growth in our understanding of the cognitive systems that underlie mathematical learning and performance, and an increased recognition of the importance of this topic. This book showcases international research on the most important cognitive issues that affect mathematical performance across a wide age range, from early childhood to adulthood. The book considers the foundational competencies of nonsymbolic and symbolic number processing before discussing arithmetic, conceptual understanding, individual differences and dyscalculia, algebra, number systems, reasoning and higher-level mathematics such as formal proof. Drawing on diverse methodology from behavio...
Contemporary Scottish art gained international recognition in the 1980s, both in terms of the increasing reputation of established artists like Alan Davie, John Bellany, Bruce McLean and Elizabeth Blackadder but also with regard to a number of important emerging painters. Many of the themes of international 'New Painting' in the 1980s - bold figuration, evocative narrative, emphatic technique and poetic atmosphere - are also characteristic of contemporary Scottish art but, as can clearly be seen here, Scottish painting has at last rediscovered its own voice. This timely book describes recent events in contemporary Scottish painting and provides fascinating profiles of 48 notable artists. This is the first major overview of contemporary Scottish painting.
This book explores the results of applying empirical methods to the philosophy of logic and mathematics. Much of the work that has earned experimental philosophy a prominent place in twenty-first century philosophy is concerned with ethics or epistemology. But, as this book shows, empirical methods are just as much at home in logic and the philosophy of mathematics. Chapters demonstrate and discuss the applicability of a wide range of empirical methods including experiments, surveys, interviews, and data-mining. Distinct themes emerge that reflect recent developments in the field, such as issues concerning the logic of conditionals and the role played by visual elements in some mathematical proofs. Featuring leading figures from experimental philosophy and the fields of philosophy of logic and mathematics, this collection reveals that empirical work in these disciplines has been quietly thriving for some time and stresses the importance of collaboration between philosophers and researchers in mathematics education and mathematical cognition.
The transition from school mathematics to university mathematics is seldom straightforward. Students are faced with a disconnect between the algorithmic and informal attitude to mathematics at school, versus a new emphasis on proof, based on logic, and a more abstract development of general concepts, based on set theory. The authors have many years' experience of the potential difficulties involved, through teaching first-year undergraduates and researching the ways in which students and mathematicians think. The book explains the motivation behind abstract foundational material based on students' experiences of school mathematics, and explicitly suggests ways students can make sense of form...
Analysis is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared.
*THIS BOOK IS AVAILABLE AS OPEN ACCESS BOOK ON SPRINGERLINK* One of the most significant tasks facing mathematics educators is to understand the role of mathematical reasoning and proving in mathematics teaching, so that its presence in instruction can be enhanced. This challenge has been given even greater importance by the assignment to proof of a more prominent place in the mathematics curriculum at all levels. Along with this renewed emphasis, there has been an upsurge in research on the teaching and learning of proof at all grade levels, leading to a re-examination of the role of proof in the curriculum and of its relation to other forms of explanation, illustration and justification. T...