You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.
This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.
During the author’s doctorate time at the Christian-Albrechts-Universitat to Kiel, Salvatore Siciliano gave a stimulating talk in the upper seminar algebra theory about Cartan subalgebras in Lie algebra associates to associative algebra. This talk was the incentive for the author to analyze maximal nilpotent substructures of the Lie algebra associated to associative algebras. In the present work Siciliano's theory about Cartan subalgebras is worked off and expanded to different special associative algebra classes. In addition, a second maximal nilpotent substructure is analyzed: the nilradical. Within this analysis the main focus is to describe these substructure with the associative structure of the underlying algebra. This is successfully realized in this work. Numerous examples (like group algebras and Solomon (Tits-) algebras) illustrate the results to the reader. Within the numerous exercises these results can be applied by the reader to get a deeper insight in this theory.
A polynomial identity for an algebra (or a ring) A A is a polynomial in noncommutative variables that vanishes under any evaluation in A A. An algebra satisfying a nontrivial polynomial identity is called a PI algebra, and this is the main object of study in this book, which can be used by graduate students and researchers alike. The book is divided into four parts. Part 1 contains foundational material on representation theory and noncommutative algebra. In addition to setting the stage for the rest of the book, this part can be used for an introductory course in noncommutative algebra. An expert reader may use Part 1 as reference and start with the main topics in the remaining parts. Part ...
The first comprehensive modern introduction to central simple algebra starting from the basics and reaching advanced results.
A3 & HIS ALGEBRA is the true story of a struggling young boy from Chicago's west side who grew to become a force in American mathematics. For nearly 50 years, A. A. Albert thrived at the University of Chicago, one of the world's top centers for algebra. His "pure research" in algebra found its way into modern computers, rocket guidance systems, cryptology, and quantum mechanics, the basic theory behind atomic energy calculations. This first-hand account of the life of a world-renowned American mathematician is written by Albert's daughter. Her memoir, which favors a general audience, offers a personal and revealing look at the multidimensional life of an academic who had a lasting impact on ...
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
The second volume continues--and presumably concludes since they date to two years after his death--the selection of almost all of Amitsur's (1921-1994) work demonstrating his wide and enduring contribution to algebra, though some in Hebrew and some expositions are not included. The sections here are combinatorial polynomial identity theory and division algebras, each introduced by a mathematician. The papers are reproduced from their original publication in a variety of type styles and pay layouts. The biographical sketch must be in the first volume. There is no index. c. Book News Inc.