You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.
The Water Reactor Fuel Performance Meeting (WRFPM) held in Asia has merged with TopFuel in Europe and LWR Fuel Performance in the United States to form the globally most influential conference in the field of nuclear fuel research. WRFPM2023 is organized by Chinese Nuclear Society (CNS) in cooperation with the Atomic Energy Society of Japan (AESJ), Korean Nuclear Society (KNS), European Nuclear Society (ENS), American Nuclear Society (ANS), the Interna-tional Atomic Energy Agency (IAEA) with the support from China Nuclear Energy In¬dustry Corporation (CNEIC) and TVEL. Conference Topics: 1. Advances in water reactor fuel technology and testing 2. Operation and experience 3. Transient and off-normal fuel behaviour and safety related issues 4. Fuel cycle, used fuel storage and transportation 5. Innovative fuel and related issues 6. Fuel modelling, analysis and methodology
This volume includes 28 contributions to the Toyoichi Tanaka Memorial Symposium on Gels which took place at Arcadia Ichigaya on September 10th-12th, 2008. The contributions from leading scientists cover a broad spectrum of topics concerning: Structure and Functional Properties of Gels - Swelling of Gels - Industrial and Biomedical Application. The symposium was held in the style of Faraday Discussions, which stimulated the active discussion. After the symposium, each manuscript was rewritten based on the discussion and the critical review. Since the research on gels is becoming more and more important both for academia and industry, this book will be an essential source of information.
This handbook covers smart manufacturing development, processing, modifications, and applications. It provides a complete understanding of the recent advancements in smart manufacturing through its various enabling manufacturing technologies, and how industries and organizations can find the needed information on how to implement smart manufacturing towards sustainability of manufacturing practices. Handbook of Smart Manufacturing: Forecasting the Future of Industry 4.0 covers all related advances in manufacturing such as the integration of reverse engineering with smart manufacturing, industrial internet of things (IIoT), and artificial intelligence approaches, including Artificial Neural N...
Functional materials are important materials for any technological needs and the forefront of materials research. Development of functional materials and their effective applications in the frontier fields of cross-multidisciplinary research programs is unique. This book presents an overview of different types of functional materials, including synthesis, characterization and application, and up-to-date treatment of functional materials, which are needed for structural, magnetic, polymeric, electromagnetic, etc. applications. New topics based on polymeric materials and spintronic materials are given for possible applications. The chapters of the book provide a key understanding of functional materials. It is suitable for undergraduates, graduates, and professionals, including engineers, scientists, researchers, technicians, and technology managers.
Shape Memory Polymer Composites discusses the fabrication of smart polymer composites with their material characterization. It covers shape memory polymer composites with two different types of reinforcement: shape memory polymer nanocomposites and shape memory hybrid composites. Enhancing the mechanical and thermomechanical properties of the shape memory polymers makes them an important class of materials for new age applications ranging from aerospace, biomedical, electronics, to marine engineering. The book discusses how shape memory polymer composites exhibit remarkable mechanical properties, as compared to its corresponding shape memory polymers, without compromising the shape memory behavior. It presents experimental case studies of polymers, polymer composites, and multiphase composites, explaining the effects of each reinforcement on the material properties with corresponding simulation. The book will be a useful reference for industry professionals and researchers involved with the mechanics of shape memory materials.
This book introduces the recent progress that has resulted from utilizing the idea of "element-block polymers". A structural unit consisting of various groups of elements is called an "element-block." The design and synthesis of new element-blocks, polymerization of these blocks, and development of methods of forming higher-order structures and achieving hierarchical interface control in order to yield the desired functions are expected to result in manifold advantages. These benefits will encourage the creation of new polymeric materials that share, at a high level, electronic, optical, and magnetic properties not achievable with conventional organic polymeric materials as well as forming p...
Surface engineering provides one of the most important means of engineering product differentiation in terms of quality, performance, and lifecycle cost. It is essential to achieve predetermined functional properties of materials such as mechanical strength, biocompatibility, corrosion resistance, wear resistance, and heat and oxidation resistance. Surface Engineering of Biomaterials addresses this topic across a diverse range of process technologies and healthcare applications. Introduces biomaterial surface science and surface engineering and includes criteria for biomaterial surface selection Focuses on a broad array of materials including metals, ceramics, polymers, alloys, and composites Discusses corrosion, degradation, and material release issues in implant materials Covers various processing routes to develop biomaterial surfaces, including for smart and energy applications Details techniques for post-modification of biomaterial surfaces This reference work helps researchers working at the intersection of materials science and biotechnology to engineer functional biomaterials for a variety of applications.
The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues. Unfolding the Biopolymer Landscape provides a unique account of “biopolymeric interventions” inherent to biotechnological applications, soft tissue engineering, ophthalmic drug delivery, biotextiles, environmentally responsive systems, neurotherapeutics, and emulsions-based formulations for food and pharmaceutical applications. Chapters in this volume also cover biomedical applications and implications of cationic polymers, collagen-based substrates, multifunctional polymers, shape memory biopoly...