You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Children’s Fractional Knowledge elegantly tracks the construction of knowledge, both by children learning new methods of reasoning and by the researchers studying their methods. The book challenges the widely held belief that children’s whole number knowledge is a distraction from their learning of fractions by positing that their fractional learning involves reorganizing—not simply using or building upon—their whole number knowledge. This hypothesis is explained in detail using examples of actual grade-schoolers approaching problems in fractions including the schemes they construct to relate parts to a whole, to produce a fraction as a multiple of a unit part, to transform a fractio...
Explains the nature and origins of anxiety about mathematics and provides advice on working with a variey of specific mathematical concepts and problems.
Providing essential guidance and background information about teaching mathematics, this book is intended particularly for teachers who do not regard themselves as specialists in mathematics. It deals with issues of learning and teaching, including the delivery of content and the place of problems and investigations. Difficulties which pupils encounter in connection with language and symbols form important sections of the overall discussion of how to enhance learning. The curriculum is considered in brief under the headings of number, algebra, shape and space, and data handling, and special attention is paid to the topic approach and mathematics across the curriculum. The assessment of mathematical attainment is also dealt with thoroughly. Teachers will find this book an invaluable companion in their day-to-day teaching.
In recent years there has been a resurgence of interest in the study of delay differential equations motivated largely by new applications in physics, biology, ecology, and physiology. The aim of this monograph is to present a reasonably self-contained account of the advances in the oscillation theory of this class of equations. Throughout, the main topics of study are shown in action, with applications to such diverse problems as insect population estimations, logistic equations in ecology, the survival of red blood cells in animals, integro-differential equations, and the motion of the tips of growing plants. The authors begin by reviewing the basic theory of delay differential equations, including the fundamental results of existence and uniqueness of solutions and the theory of the Laplace and z-transforms. Little prior knowledge of the subject is required other than a firm grounding in the main techniques of differential equation theory. As a result, this book provides an invaluable reference to the recent work both for mathematicians and for all those whose research includes the study of this fascinating class of differential equations.
In 1992, when Paul Erdos was awarded a Doctor Honoris Causa by Charles University in Prague, a small conference was held, bringing together a distin guished group of researchers with interests spanning a variety of fields related to Erdos' own work. At that gathering, the idea occurred to several of us that it might be quite appropriate at this point in Erdos' career to solicit a col lection of articles illustrating various aspects of Erdos' mathematical life and work. The response to our solicitation was immediate and overwhelming, and these volumes are the result. Regarding the organization, we found it convenient to arrange the papers into six chapters, each mirroring Erdos' holistic appr...
This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.
. E C, 0 1'1 1, and n E Z, n ~ 2. Let~.. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.
This book is the first to be devoted entirely to fuzzy abstract algebra. It presents an up-to-date version of fuzzy commutative algebra, and focuses on the connection between L-subgroups of a group, and L-subfields of a field. In particular, an up-to-date treatment of nonlinear systems of fuzzy intersection equations is given.
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and symbolic dynamics. With its descriptive writing style, this book is highly accessible.
This research-level book presents up-to-date information concerning recent developments in convex functions and partial orderings and some applications in mathematics, statistics, and reliability theory. The book will serve researchers in mathematical and statistical theory and theoretical and applied reliabilists. Presents classical and newly published results on convex functions and related inequalities Explains partial ordering based on arrangement and their applications in mathematics, probability, statsitics, and reliability Demonstrates the connection of partial ordering with other well-known orderings such as majorization and Schur functions Will generate further research and applications