You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Epoxy resins are polymers which are extensively used as coating materials due to their outstanding mechanical properties and good handling characteristics. A disadvantage results from their high cross-link density: they are brittle and have very low resistance to crack growth and propagation. This necessitates the toughening of the epoxy matrix without impairing its good thermomechanical properties. The final properties of the polymer depend on their structure. The book focuses on the microstructural aspects in the modification of epoxy resins with low molecular weight liquid rubbers, one of the prime toughening agents commonly employed. The book follows thoroughly the reactions of elastomer-modified epoxy resins from their liquid stage to the network formation. It gives an in-depth view into the cure reaction, phase separation and the simultaneous development of the morphology. Chapters on ageing, failure analysis and life cycle analysis round out the book.
These proceedings present papers on Additive Manufacturing, Composites Forming Processes, Extrusion and Drawing, Forging and Rolling, Formability of Metallic Materials, Friction and Wear in Metal Forming, Incremental and Sheet Metal Forming, Innovative Joining by Forming Technologies, Lionel Fourment MS on Optimization and Inverse Analysis in Forming, Machining and Cutting, Material Behavior Modelling, New and Advanced Numerical Strategies for Material Forming, Non-Conventional Processes, Polymer Processing and Thermomechanical Properties, Sustainability on Material Forming, and Property-Controlled Forming.
In this work, initially, the requirements on a simulation model of the non-isothermal stamp forming process of unidirectional fiber-reinforced, and thermoplastic tape laminates are investigated experimentally. On this basis, different isothermal as well as a fully coupled thermomechanical simulation model under consideration of the crystallization kinetics are developed. For validation, a complex shaped geometry is simulated and compared to experimental forming results.
This book is centred about the Principle of virtual work and the related method for mechanical modelling. It aims at showing and enhancing the polyvalence and versatility of the virtual work approach in the mechanical modelling process. The virtual work statement is set as the principle at the root of a force modelling method that can be implemented on any geometrical description. After experimentally induced hypotheses have been made on the geometrical parameters that describe the concerned system and subsystems, the method provides a unifying framework for building up consistently associated force models where external and internal forces are introduced through their virtual rates of work. Systems described as three-dimensional, curvilinear or planar continua are considered: force models are established with the corresponding equations of motion; the validation process points out that enlarging the domain of relevance of the model for practical applications calls for an enrichment of the geometrical description that takes into account the underlying microstructure.
In this book, the authors present in detail several recent methodologies and algorithms that they developed during the last fifteen years. The deterministic methods account for uncertainties through empirical safety factors, which implies that the actual uncertainties in materials, geometry and loading are not truly considered. This problem becomes much more complicated when considering biomechanical applications where a number of uncertainties are encountered in the design of prosthesis systems. This book implements improved numerical strategies and algorithms that can be applied to biomechanical studies.
The main topic of this book is the recent development of on-board advanced driver-assistance systems (ADAS), which we can already tell will eventually contribute to the autonomous and connected vehicles of tomorrow. With the development of automated mobility, it becomes necessary to design a series of modules which, from the data produced by on-board or remote information sources, will enable the construction of a completely automated driving system. These modules are perception, decision and action. State-of-the-art AI techniques and their potential applications in the field of autonomous vehicles are described. Perception systems, focusing on visual sensors, the decision module and the prototyping, testing and evaluation of ADAS systems are all presented for effective implementation on autonomous and connected vehicles. This book also addresses cooperative systems, such as pedestrian detection, as well as the legal issues in the use of autonomous vehicles in open environments.
Nanoscience, nanotechnologies and the laws of quantum physics are sources of disruptive innovation that open up new fields of application. Quantum engineering enables the development of very sensitive materials, sensor measurement systems and computers. Quantum computing, which is based on two-level systems, makes it possible to manufacture computers with high computational power. This book provides essential knowledge and culminates with an industrial application of quantum engineering and nanotechnologies. It presents optical systems for measuring at the nanoscale, as well as quantum physics models that describe how a two-state system interacts with its environment. The concept of spin and...
The idea of autonomous systems that are able to make choices according to properties which allow them to experience, apprehend and assess their environment is becoming a reality. These systems are capable of auto-configuration and self-organization. This book presents a model for the creation of autonomous systems based on a complex substratum, made up of multiple electronic components that deploy a variety of specific features. This substratum consists of multi-agent systems which act continuously and autonomously to collect information from the environment which they then feed into the global system, allowing it to generate discerning and concrete representations of its surroundings. These systems are able to construct a so-called artificial corporeity which allows them to have a sense of self, to then behave autonomously, in a way reminiscent of living organisms.