You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a collection of the chapters intended to study only practical applications of HTS materials. You will find here a great number of research on actual applications of HTS as well as possible future applications of HTS. Depending on the strength of the applied magnetic field, applications of HTS may be divided in two groups: large scale applications (large magnetic fields) and small scale applications (small magnetic fields). 12 chapters in the book are fascinating studies about large scale applications as well as small scale applications of HTS. Some chapters are presenting interesting research on the synthesis of special materials that may be useful in practical applications of HTS. There are also research about properties of high-Tc superconductors and experimental research about HTS materials with potential applications. The future of practical applications of HTS materials is very exciting. I hope that this book will be useful in the research of new radical solutions for practical applications of HTS materials and that it will encourage further experimental research of HTS materials with potential technological applications.
This book consists of over 600 selected descriptions and abstracts of books, book chapters, patents and journal articles from throughout the world dealing with this high-profile topic. Each citation contains complete bibliographic data plus key words. The entries are grouped under the headings of: Theory of Superconductivity; Superconducting Devices; Superconducting Properties of Materials; Applications of Superconductors: Author Index; Subject Index.
This volume covered all topics of current interest in High Temperature Superconductivity with emphasis on experimental and theoretical physics. It includes chemical aspects, material and applications of HTc
This Conference is designed to cover the entire field of current-carrying properties of superconductors, either metallic alloys or the new high-Tc metallic oxides. Related topics will be treated as well as the large scale applications. Topics covered include magnetization and flux behaviour, current transport and critical currents, Josephson junctions and proximity effect, microwave absorption and rf surface resistance, thermal conductivity and specific heat, Hall effect and thermoelectric power, thermal fluctuations and paraconductivity, applications of high-Tc materials.
The 1999 Joint Cryogenic Engineering Conference (CEC) and International Cryogenic Materials Conference (ICMC) were held in Montreal, Quebec, Canada from July 12th to July 16th. The joint conference theme was "Cryogenics into the Next Millennium". The total conference attendance was 797 with participation from 28 countries. As with previous joint CEC and ICMC Conferences, the participants were able to benefit from the joint conference's coverage of cryogenic applications and materials and their interactions. The conference format of plenary, oral and poster presentations, and an extensive commercial exhibit, the largest in CEC-ICMC history, aimed to promote this synergy. The addition of short...
None
The 2nd edition emphasizes two areas not emphasized in the 1st edition: 1) high-temperature superconductor (HTS) magnets; 2) NMR (nuclear magnetic resonance) and MRI (magnetic resonance imaging) magnets. Despite nearly 40 years of R and D on superconducting magnet technology, most areas, notably fusion and electric power applications, are still in the R and D stage. One exception is in the area of NMR and MRI. NMR magnets are very popular among chemists, biologists, genome scientists, and most of all, by drug manufacturers for drug discovery and development. MRI and NMR magnets have become the most successful application of superconducting magnet technology and this trend should continue. The 2nd edition will have new materials never treated formally in any other book of this kind. As with the 1st, most subjects will be presented through problem format to educate and train the designer.