You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.
1 More than thirty years after its discovery by Abraham Robinson , the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum,as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and...
An introduction to nonstandard analysis based on a course given by the author. It is suitable for beginning graduates or upper undergraduates, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers, but as a radically different way of viewing many standard mathematical concepts and constructions. It is a source of new ideas, objects and proofs, and a wealth of powerful new principles of reasoning. The book begins with the ultrapower construction of hyperreal number systems, and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line. Highlights include an early introduction of the ideas of internal, external and hyperfinite sets, and a more axiomatic set-theoretic approach to enlargements than is usual.
This book reflects the progress made in the forty years since the appearance of Abraham Robinson’s revolutionary book Nonstandard Analysis in the foundations of mathematics and logic, number theory, statistics and probability, in ordinary, partial and stochastic differential equations and in education. The contributions are clear and essentially self-contained.
This book provides an introduction to the mathematical modelling of real world financial markets and the rational pricing of derivatives, which is part of the theory that not only underpins modern financial practice but is a thriving area of mathematical research. The central theme is the question of how to find a fair price for a derivative; defined to be a price at which it is not possible for any trader to make a risk free profit by trading in the derivative. To keep the mathematics as simple as possible, while explaining the basic principles, only discrete time models with a finite number of possible future scenarios are considered. The theory examines the simplest possible financial mod...
This book constitutes the refereed proceedings of the Second International Conference on Computability in Europe, CiE 2006, held in Swansea, UK, June/July 2006. The book presents 31 revised full papers together with 30 invited papers, including papers corresponding to 8 plenary talks and 6 special sessions on proofs and computation, computable analysis, challenges in complexity, foundations of programming, mathematical models of computers and hypercomputers, and Gödel centenary: Gödel's legacy for computability.
Competition and efficiency is at the core of economic theory. This volume collects papers of leading scholars, which extend the conventional general equilibrium model in important ways: Efficiency and price regulation are studied when markets are incomplete and existence of equilibria in such settings is proven under very general preference assumptions. The model is extended to include geographical location choice, a commodity space incorporating manufacturing imprecision and preferences for club-membership, schools and firms. Inefficiencies arising from household externalities or group membership are evaluated. Core equivalence is shown for bargaining economies. The theory of risk aversion is extended and the relation between risk taking and wealth is experimentally investigated. Other topics include determinacy in OLG with cash-in-advance constraints, income distribution and democracy in OLG, learning in OLG and in games, optimal pricing of derivative securities, the impact of heterogeneity at the individual level for aggregate consumption, and adaptive contracting in view of uncertainty.
This expanded version of the 1997 European Mathematical Society Lectures given by the author in Helsinki, begins with a self-contained introduction to nonstandard analysis (NSA) and the construction of Loeb Measures, which are rich measures discovered in 1975 by Peter Loeb, using techniques from NSA. Subsequent chapters sketch a range of recent applications of Loeb measures due to the author and his collaborators, in such diverse fields as (stochastic) fluid mechanics, stochastic calculus of variations ("Malliavin" calculus) and the mathematical finance theory. The exposition is designed for a general audience, and no previous knowledge of either NSA or the various fields of applications is assumed.
This book is the proceedings of Falk Symposium 128, held in Würzburg, Germany, on May 2-3, 2002, and dedicated to the important issue of colonic carcinogenesis and its underlying genetic and environmental factors. Colorectal cancer is one of the leading causes of cancer-related death in industrialized countries. It has been recognized to be the consequence of a dynamic process leading from hyperproliferative epithelium through different classes of adenomas to invasive carcinoma. This adenoma-carcinoma sequence has been characterized on a molecular basis. Modern molecular biology has also helped to clarify the clustering of colorectal cancer within families, a phenomenon that has been known ...
At first glance, Robinson's original form of nonstandard analysis appears nonconstructive in essence, because it makes a rather unrestricted use of classical logic and set theory and, in particular, of the axiom of choice. Recent developments, however, have given rise to the hope that the distance between constructive and nonstandard mathematics is actually much smaller than it appears. So the time was ripe for the first meeting dedicated simultaneously to both ways of doing mathematics – and to the current and future reunion of these seeming opposites. Consisting of peer-reviewed research and survey articles written on the occasion of such an event, this volume offers views of the continuum from various standpoints. Including historical and philosophical issues, the topics of the contributions range from the foundations, the practice, and the applications of constructive and nonstandard mathematics, to the interplay of these areas and the development of a unified theory.