You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.
Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity prem...
The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited vol...
This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning.
This book constitutes the refereed proceedings of the 16th International Conference on Algorithmic Learning Theory, ALT 2005, held in Singapore in October 2005. The 30 revised full papers presented together with 5 invited papers and an introduction by the editors were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on kernel-based learning, bayesian and statistical models, PAC-learning, query-learning, inductive inference, language learning, learning and logic, learning from expert advice, online learning, defensive forecasting, and teaching.
Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.
This book constitutes the refereed proceedings of the 5th International Symposium on Conformal and Probabilistic Prediction with Applications, COPA 2016, held in Madrid, Spain, in April 2016. The 14 revised full papers presented together with 1 invited paper were carefully reviewed and selected from 23 submissions and cover topics on theory of conformal prediction; applications of conformal prediction; and machine learning.
TAMC 2006 was the third conference in the series. The previous two meetings were held May 17–19, 2004 in Beijing, and May 17–20, 2005 in Kunming
This book constitutes the refereed proceedings of the 14th International Conference on Algorithmic Learning Theory, ALT 2003, held in Sapporo, Japan in October 2003. The 19 revised full papers presented together with 2 invited papers and abstracts of 3 invited talks were carefully reviewed and selected from 37 submissions. The papers are organized in topical sections on inductive inference, learning and information extraction, learning with queries, learning with non-linear optimization, learning from random examples, and online prediction.
The fields of similarity and preference are still broadening due to the exploration of new fields of application. This is caused by the strong impact of vagueness, imprecision, uncertainty and dominance on human and agent information, communication, planning, decision, action, and control as well as by the technical progress of the information technology itself. The topics treated in this book are of interest to computer scientists, statisticians, operations researchers, experts in AI, cognitive psychologists and economists.