You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Expanding upon presentations at last year’s SUEMA (Supervised and Unsupervised Ensemble Methods and Applications) meeting, this volume explores recent developments in the field. Useful examples act as a guide for practitioners in computational intelligence.
This book constitutes the refereed proceedings of the 14th Scandinavian Conference on Image Analysis, SCIA 2005, held in Joensuu, Finland in June 2005. The 124 papers presented together with 6 invited papers were carefully reviewed and selected from 236 submissions. The papers are organized in topical sections on image segmentation and understanding, color image processing, applications, theory, medical image processing, image compression, digitalization of cultural heritage, computer vision, machine vision, and pattern recognition.
From an engineering standpoint, the increasing complexity of robotic systems and the increasing demand for more autonomously learning robots, has become essential. This book is largely based on the successful workshop “From motor to interaction learning in robots” held at the IEEE/RSJ International Conference on Intelligent Robot Systems. The major aim of the book is to give students interested the topics described above a chance to get started faster and researchers a helpful compandium.
Professor Richard S. Michalski passed away on September 20, 2007. Once we learned about his untimely death we immediately realized that we would no longer have with us a truly exceptional scholar and researcher who for several decades had been inf- encing the work of numerous scientists all over the world - not only in his area of expertise, notably machine learning, but also in the broadly understood areas of data analysis, data mining, knowledge discovery and many others. In fact, his influence was even much broader due to his creative vision, integrity, scientific excellence and exceptionally wide intellectual horizons which extended to history, political science and arts. Professor Micha...
This three-volume set constitutes the refereed proceedings of the 14th International Conference on Knowledge Science, Engineering and Management, KSEM 2021, held in Tokyo, Japan, in August 2021. The 164 revised full papers were carefully reviewed and selected from 492 submissions. The contributions are organized in the following topical sections: knowledge science with learning and AI; knowledge engineering research and applications; knowledge management with optimization and security.
Intelligent Information Systems (IIS) can be defined as the next generation of Information Systems (IS) developed as a result of integration of AI and database (DB) technologies. IIS embody knowledge that allows them to exhibit intelligent behavior, allows them to cooperate with users and other systems in problem solving, discovery, retrieval, and manipulation of data and knowledge. For any IIS to serve its purpose, the information must be available when it is needed. This means that the computing systems used to store data and process the information, and the security controls used to protect it must be functioning correctly. This book covers some of the above topics and it is divided into four sections: Classification, Approximation and Data Security, Knowledge Management, and Application of IIS to medical and music domains.
Professor Richard S. Michalski passed away on September 20, 2007. Once we learned about his untimely death we immediately realized that we would no longer have with us a truly exceptional scholar and researcher who for several decades had been inf- encing the work of numerous scientists all over the world - not only in his area of exp- tise, notably machine learning, but also in the broadly understood areas of data analysis, data mining, knowledge discovery and many others. In fact, his influence was even much broader due to his creative vision, integrity, scientific excellence and excepti- ally wide intellectual horizons which extended to history, political science and arts. Professor Micha...
This two-volume set of LNAI 11775 and LNAI 11776 constitutes the refereed proceedings of the 12th International Conference on Knowledge Science, Engineering and Management, KSEM 2019, held in Athens, Greece, in August 2019. The 77 revised full papers and 23 short papers presented together with 10 poster papers were carefully reviewed and selected from 240 submissions. The papers of the first volume are organized in the following topical sections: Formal Reasoning and Ontologies; Recommendation Algorithms and Systems; Social Knowledge Analysis and Management ; Data Processing and Data Mining; Image and Video Data Analysis; Deep Learning; Knowledge Graph and Knowledge Management; Machine Learning; and Knowledge Engineering Applications. The papers of the second volume are organized in the following topical sections: Probabilistic Models and Applications; Text Mining and Document Analysis; Knowledge Theories and Models; and Network Knowledge Representation and Learning.
This book is a composition of different points of view regarding the application of Computational Intelligence techniques and methods to Remote Sensing data and applications. It is the general consensus that classification, its related data processing, and global optimization methods are core topics of Computational Intelligence. Much of the content of the book is devoted to image segmentation and recognition, using diverse tools from different areas of the Computational Intelligence field, ranging from Artificial Neural Networks to Markov Random Field modeling. The book covers a broad range of topics, starting from the hardware design of hyperspectral sensors, and data handling problems, namely data compression and watermarking issues, as well as autonomous web services. The main contents of the book are devoted to image analysis and efficient (parallel) implementations of these analysis techniques. The classes of images dealt with throughout the book are mostly multispectral-hyperspectral images, though there are some instances of processing Synthetic Aperture Radar images.
Machine learning builds models of the world using training data from the application domain and prior knowledge about the problem. The models are later applied to future data in order to estimate the current state of the world. An implied assumption is that the future is stochastically similar to the past. The approach fails when the system encounters situations that are not anticipated from the past experience. In contrast, successful natural organisms identify new unanticipated stimuli and situations and frequently generate appropriate responses. The observation described above lead to the initiation of the DIRAC EC project in 2006. In 2010 a workshop was held, aimed to bring together researchers and students from different disciplines in order to present and discuss new approaches for identifying and reacting to unexpected events in information-rich environments. This book includes a summary of the achievements of the DIRAC project in chapter 1, and a collection of the papers presented in this workshop in the remaining parts.