You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.
This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.
The contributions gathered in this open access book focus on modern methods for data science and classification and present a series of real-world applications. Numerous research topics are covered, ranging from statistical inference and modeling to clustering and dimension reduction, from functional data analysis to time series analysis, and network analysis. The applications reflect new analyses in a variety of fields, including medicine, marketing, genetics, engineering, and education. The book comprises selected and peer-reviewed papers presented at the 17th Conference of the International Federation of Classification Societies (IFCS 2022), held in Porto, Portugal, July 19–23, 2022. Th...
Karlheinz Brandenburg and Mark Kahrs With the advent of multimedia, digital signal processing (DSP) of sound has emerged from the shadow of bandwidth limited speech processing. Today, the main appli cations of audio DSP are high quality audio coding and the digital generation and manipulation of music signals. They share common research topics including percep tual measurement techniques and analysis/synthesis methods. Smaller but nonetheless very important topics are hearing aids using signal processing technology and hardware architectures for digital signal processing of audio. In all these areas the last decade has seen a significant amount of application oriented research. The topics co...
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory. Research has exploded in the field of machine learning resulting in complex mathematical arguments that are hard to grasp for new comers. . In this accessible textbook, Francis Bach presents the foundations and latest advances of learning theory for graduate students as well as researchers who want to acquire a basic mathematical understanding of the most widely used machine learning architectures. Taking the position that learning theory does not exist outside of algorithms that can be run in practice, this book focuses on the theoretical analysis of learning algorithms as it relates...
This book provides comprehensive coverage of combined Artificial Intelligence (AI) and Machine Learning (ML) theory and applications. Rather than looking at the field from only a theoretical or only a practical perspective, this book unifies both perspectives to give holistic understanding. The first part introduces the concepts of AI and ML and their origin and current state. The second and third parts delve into conceptual and theoretic aspects of static and dynamic ML techniques. The forth part describes the practical applications where presented techniques can be applied. The fifth part introduces the user to some of the implementation strategies for solving real life ML problems. The bo...
This book constitutes the refereed proceedings of the 23rd International Conference on Algorithmic Learning Theory, ALT 2012, held in Lyon, France, in October 2012. The conference was co-located and held in parallel with the 15th International Conference on Discovery Science, DS 2012. The 23 full papers and 5 invited talks presented were carefully reviewed and selected from 47 submissions. The papers are organized in topical sections on inductive inference, teaching and PAC learning, statistical learning theory and classification, relations between models and data, bandit problems, online prediction of individual sequences, and other models of online learning.
Applied Signal Processing: A MATLAB-Based Proof of Concept benefits readers by including the teaching background of experts in various applied signal processing fields and presenting them in a project-oriented framework. Unlike many other MATLAB-based textbooks which only use MATLAB to illustrate theoretical aspects, this book provides fully commented MATLAB code for working proofs-of-concept. The MATLAB code provided on the accompanying online files is the very heart of the material. In addition each chapter offers a functional introduction to the theory required to understand the code as well as a formatted presentation of the contents and outputs of the MATLAB code. Each chapter exposes h...