You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a practical book for computer engineers who want to understand or implement hardware/software systems. It focuses on problems that require one to combine hardware design with software design – such problems can be solved with hardware/software codesign. When used properly, hardware/software co- sign works better than hardware design or software design alone: it can improve the overall performance of digital systems, and it can shorten their design time. Hardware/software codesign can help a designer to make trade-offs between the ?exibility and the performanceof a digital system. To achieve this, a designer needs to combine two radically different ways of design: the sequential way...
This book constitutes the refereed proceedings of the 8th International Workshop on Security, IWSEC 2013, held in Okinawa, Japan, in November 2013. The 20 revised selected papers presented in this volume were carefully reviewed and selected from 63 submissions. They are organized in topical sections named: software and system security, cryptanalysis, privacy and cloud computing, public key cryptosystems, and security protocols.
This volume constitutes the refereed post-proceedings of the 13th International Workshop on Selected Areas in Cryptography. Twenty-five full papers are presented along with two important invited talks. The papers are organized into topical sections covering block cipher cryptanalysis, stream cipher cryptanalysis, block and stream ciphers, side-channel attacks, efficient implementations, message authentication codes, and hash functions.
Beginning with an introduction to cryptography, Hardware Security: Design, Threats, and Safeguards explains the underlying mathematical principles needed to design complex cryptographic algorithms. It then presents efficient cryptographic algorithm implementation methods, along with state-of-the-art research and strategies for the design of very large scale integrated (VLSI) circuits and symmetric cryptosystems, complete with examples of Advanced Encryption Standard (AES) ciphers, asymmetric ciphers, and elliptic curve cryptography (ECC). Gain a Comprehensive Understanding of Hardware Security—from Fundamentals to Practical Applications Since most implementations of standard cryptographic ...
Welcome to the Third International Conference on Information Security and Ass- ance (ISA 2009). ISA 2009 was the most comprehensive conference focused on the various aspects of advances in information security and assurance. The concept of security and assurance is emerging rapidly as an exciting new paradigm to provide reliable and safe life services. Our conference provides a chance for academic and industry professionals to discuss recent progress in the area of communication and networking including modeling, simulation and novel applications associated with the utilization and acceptance of computing devices and systems. ISA 2009 was a succ- sor of the First International Workshop on In...
This book constitutes the proceedings of the 13th International Workshop on Cryptographic Hardware and Embedded Systems, CHES 2011, held in Nara, Japan, from September 28 until October 1, 2011. The 32 papers presented together with 1 invited talk were carefully reviewed and selected from 119 submissions. The papers are organized in topical sections named: FPGA implementation; AES; elliptic curve cryptosystems; lattices; side channel attacks; fault attacks; lightweight symmetric algorithms, PUFs; public-key cryptosystems; and hash functions.
System-on-Chip Methodologies & Design Languages brings together a selection of the best papers from three international electronic design language conferences in 2000. The conferences are the Hardware Description Language Conference and Exhibition (HDLCon), held in the Silicon Valley area of USA; the Forum on Design Languages (FDL), held in Europe; and the Asia Pacific Chip Design Language (APChDL) Conference. The papers cover a range of topics, including design methods, specification and modeling languages, tool issues, formal verification, simulation and synthesis. The results presented in these papers will help researchers and practicing engineers keep abreast of developments in this rapidly evolving field.
The three volume-set, LNCS 10401, LNCS 10402, and LNCS 10403, constitutes the refereed proceedings of the 37th Annual International Cryptology Conference, CRYPTO 2017, held in Santa Barbara, CA, USA, in August 2017. The 72 revised full papers presented were carefully reviewed and selected from 311 submissions. The papers are organized in the following topical sections: functional encryption; foundations; two-party computation; bitcoin; multiparty computation; award papers; obfuscation; conditional disclosure of secrets; OT and ORAM; quantum; hash functions; lattices; signatures; block ciphers; authenticated encryption; public-key encryption, stream ciphers, lattice crypto; leakage and subversion; symmetric-key crypto, and real-world crypto.
This book constitutes the refereed proceedings of the 9th International Workshop on Cryptographic Hardware and Embedded Systems, CHES 2007. The 31 revised full papers cover side channels, low resources, hardware attacks and countermeasures, special purpose hardware, efficient algorithms for embedded processors, efficient hardware, trusted computing.
Thomas Feller sheds some light on trust anchor architectures for trustworthy reconfigurable systems. He is presenting novel concepts enhancing the security capabilities of reconfigurable hardware. Almost invisible to the user, many computer systems are embedded into everyday artifacts, such as cars, ATMs, and pacemakers. The significant growth of this market segment within the recent years enforced a rethinking with respect to the security properties and the trustworthiness of these systems. The trustworthiness of a system in general equates to the integrity of its system components. Hardware-based trust anchors provide measures to compare the system configuration to reference measurements. Reconfigurable architectures represent a special case in this regard, as in addition to the software implementation, the underlying hardware architecture may be exchanged, even during runtime.