Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Federated Learning
  • Language: en
  • Pages: 209

Federated Learning

This book shows how federated machine learning allows multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private. Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

Transfer Learning
  • Language: en
  • Pages: 393

Transfer Learning

This in-depth tutorial for students, researchers, and developers covers foundations, plus applications ranging from search to multimedia.

Changes of Problem Representation
  • Language: en
  • Pages: 360

Changes of Problem Representation

  • Type: Book
  • -
  • Published: 2013-03-20
  • -
  • Publisher: Physica

The purpose of our research is to enhance the efficiency of AI problem solvers by automating representation changes. We have developed a system that improves the description of input problems and selects an appropriate search algorithm for each given problem. Motivation. Researchers have accumulated much evidence on the impor tance of appropriate representations for the efficiency of AI systems. The same problem may be easy or difficult, depending on the way we describe it and on the search algorithm we use. Previous work on the automatic im provement of problem descriptions has mostly been limited to the design of individual learning algorithms. The user has traditionally been responsible f...

Intelligent Planning
  • Language: en
  • Pages: 263

Intelligent Planning

"The central fact is that we are planning agents." (M. Bratman, Intentions, Plans, and Practical Reasoning, 1987, p. 2) Recent arguments to the contrary notwithstanding, it seems to be the case that people-the best exemplars of general intelligence that we have to date do a lot of planning. It is therefore not surprising that modeling the planning process has always been a central part of the Artificial Intelligence enterprise. Reasonable behavior in complex environments requires the ability to consider what actions one should take, in order to achieve (some of) what one wants and that, in a nutshell, is what AI planning systems attempt to do. Indeed, the basic description of a plan generation algorithm has remained constant for nearly three decades: given a desciption of an initial state I, a goal state G, and a set of action types, find a sequence S of instantiated actions such that when S is executed instate I, G is guaranteed as a result. Working out the details of this class of algorithms, and making the elabora tions necessary for them to be effective in real environments, have proven to be bigger tasks than one might have imagined.

Transfer Learning
  • Language: en
  • Pages: 394

Transfer Learning

Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.

Cognitive Systems and Signal Processing
  • Language: en
  • Pages: 639

Cognitive Systems and Signal Processing

This book constitutes the refereed post-conference proceedings of the 5th International Conference on Cognitive Systems and Signal Processing, ICCSIP 2020, held in Zhuhai, China, in December 2020. The 59 revised papers presented were carefully reviewed and selected from 120 submissions. The papers are organized in topical sections on algorithm; application; manipulation; bioinformatics; vision; and autonomous vehicles.

Crafting Your Research Future
  • Language: en
  • Pages: 168

Crafting Your Research Future

What is it like to be a researcher or a scientist? For young people, including graduate students and junior faculty members in universities, how can they identify good ideas for research? How do they conduct solid research to verify and realize their new ideas? How can they formulate their ideas and research results into high-quality articles, and publish them in highly competitive journals and conferences? What are effective ways to supervise graduate students so that they can establish themselves quickly in their research careers? In this book, Ling and Yang answer these questions in a step-by-step manner with specific and concrete examples from their first-hand research experience. Table of Contents: Acknowledgments / Preface / Basics of Research / Goals of Ph.D. Research / Getting Started: Finding New Ideas and Organizing Your Plans / Conducting Solid Research / Writing and Publishing Papers / Misconceptions and Tips for Paper Writing / Writing and Defending a Ph.D. Thesis / Life After Ph.D. / Summary / References / Author Biographies

Generating Abstraction Hierarchies
  • Language: en
  • Pages: 179

Generating Abstraction Hierarchies

Generating Abstraction Hierarchies presents a completely automated approach to generating abstractions for problem solving. The abstractions are generated using a tractable, domain-independent algorithm whose only inputs are the definition of a problem space and the problem to be solved and whose output is an abstraction hierarchy that is tailored to the particular problem. The algorithm generates abstraction hierarchies that satisfy the `ordered monotonicity' property, which guarantees that the structure of an abstract solution is not changed in the process of refining it. An abstraction hierarchy with this property allows a problem to be decomposed such that the solution in an abstract spa...

Mining Text Data
  • Language: en
  • Pages: 527

Mining Text Data

Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a s...

Big Data Analytics in Fog-Enabled IoT Networks
  • Language: en
  • Pages: 233

Big Data Analytics in Fog-Enabled IoT Networks

  • Type: Book
  • -
  • Published: 2023-04-19
  • -
  • Publisher: CRC Press

The integration of fog computing with the resource-limited Internet of Things (IoT) network formulates the concept of the fog-enabled IoT system. Due to a large number of IoT devices, the IoT is a main source of Big Data. A large volume of sensing data is generated by IoT systems such as smart cities and smart-grid applications. A fundamental research issue is how to provide a fast and efficient data analytics solution for fog-enabled IoT systems. Big Data Analytics in Fog-Enabled IoT Networks: Towards a Privacy and Security Perspective focuses on Big Data analytics in a fog-enabled-IoT system and provides a comprehensive collection of chapters that touch on different issues related to healthcare systems, cyber-threat detection, malware detection, and the security and privacy of IoT Big Data and IoT networks. This book also emphasizes and facilitates a greater understanding of various security and privacy approaches using advanced artificial intelligence and Big Data technologies such as machine and deep learning, federated learning, blockchain, and edge computing, as well as the countermeasures to overcome the vulnerabilities of the fog-enabled IoT system.