You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Logic networks and automata are facets of digital systems. The change of the design of logic networks from skills and art into a scientific discipline was possible by the development of the underlying mathematical theory called the Switching Theory. The fundamentals of this theory come from the attempts towards an algebraic description of laws of thoughts presented in the works by George J. Boole and the works on logic by Augustus De Morgan. As often the case in engineering, when the importance of a problem and the need for solving it reach certain limits, the solutions are searched by many scholars in different parts of the word, simultaneously or at about the same time, however, quite inde...
Chaos-based cryptography, attracting many researchers in the past decade, is a research field across two fields, i.e., chaos (nonlinear dynamic system) and cryptography (computer and data security). It Chaos' properties, such as randomness and ergodicity, have been proved to be suitable for designing the means for data protection. The book gives a thorough description of chaos-based cryptography, which consists of chaos basic theory, chaos properties suitable for cryptography, chaos-based cryptographic techniques, and various secure applications based on chaos. Additionally, it covers both the latest research results and some open issues or hot topics. The book creates a collection of high-quality chapters contributed by leading experts in the related fields. It embraces a wide variety of aspects of the related subject areas and provide a scientifically and scholarly sound treatment of state-of-the-art techniques to students, researchers, academics, personnel of law enforcement and IT practitioners who are interested or involved in the study, research, use, design and development of techniques related to chaos-based cryptography.
The two-volume proceedings, LNCS 6927 and LNCS 6928, constitute the papers presented at the 13th International Conference on Computer Aided Systems Theory, EUROCAST 2011, held in February 2011 in Las Palmas de Gran Canaria, Spain. The total of 160 papers presented were carefully reviewed and selected for inclusion in the books. The contributions are organized in topical sections on concepts and formal tools; software applications; computation and simulation in modelling biological systems; intelligent information processing; heurist problem solving; computer aided systems optimization; model-based system design, simulation, and verification; computer vision and image processing; modelling and control of mechatronic systems; biomimetic software systems; computer-based methods for clinical and academic medicine; modeling and design of complex digital systems; mobile and autonomous transportation systems; traffic behaviour, modelling and optimization; mobile computing platforms and technologies; and engineering systems applications.
Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments. Compared with classical control methods for robotic systems, the major advantages of bio-inspired self-organizing robotic systems include robustness, self-repair and self-healing in the presence of system failures and/or malfunctions, high adaptability to environmental changes, and autonomous self-organization and self-reconfiguration without a centralized control. “Bio-inspired Self-organizing Robotic Systems” provides a valuable reference for scientists, practitioners and research students working on developing control algorithms for self-organizing engineered collective systems, such as swarm robotic systems, self-reconfigurable modular robots, smart material based robotic devices, unmanned aerial vehicles, and satellite constellations.
This book has brought 24 groups of experts and active researchers around the world together in image processing and analysis, video processing and analysis, and communications related processing, to present their newest research results, exchange latest experiences and insights, and explore future directions in these important and rapidly evolving areas. It aims at increasing the synergy between academic and industry professionals working in the related field. It focuses on the state-of-the-art research in various essential areas related to emerging technologies, standards and applications on analysis, processing, computing, and communication of multimedia information. The target audience of...
This volume constitutes the papers presented at the 15th International Conference on Computer Aided Systems Theory, EUROCAST 2015, held in February 2015 in Las Palmas de Gran Canaria, Spain. The total of 107 papers presented were carefully reviewed and selected for inclusion in the book. The contributions are organized in topical sections on Systems Theory and Applications; Modelling Biological Systems; Intelligent Information Processing; Theory and Applications of Metaheuristic Algorithms; Computer Methods, Virtual Reality and Image Processing for Clinical and Academic Medicine; Signals and Systems in Electronics; Model-Based System Design, Verification, and Simulation; Digital Signal Processing Methods and Applications; Modelling and Control of Robots; Mobile Platforms, Autonomous and Computing Traffic Systems; Cloud and Other Computing Systems; and Marine Sensors and Manipulators.
The Internet of Things is a great new challenge for the development of digital systems. In addition to the increasing number of classical unconnected digital systems, more people are regularly using new electronic devices and software that are controllable and usable by means of the internet. All such systems utilize the elementariness of Boolean values. A Boolean variable can carry only two different Boolean values: FALSE or TRUE (0 or 1), and has the best interference resistance in technical systems. However, a Boolean function exponentially depends on the number of its variables. This exponential complexity is the cause of major problems in the process of design and realization of circuit...
Symmetries and Groups in Signal Processing: An Introduction deals with the subject of symmetry, and with its place and role in modern signal processing. In the sciences, symmetry considerations and related group theoretic techniques have had a place of central importance since the early twenties. In engineering, however, a matching recognition of their power is a relatively recent development. Despite that, the related literature, in the form of journal papers and research monographs, has grown enormously. A proper understanding of the concepts that have emerged in the process requires a mathematical background that goes beyond what is traditionally covered in an engineering undergraduate curriculum. Admittedly, there is a wide selection of excellent introductory textbooks on the subject of symmetry and group theory. But they are all primarily addressed to students of the sciences and mathematics, or to students of courses in mathematics. Addressed to students with an engineering background, this book is meant to help bridge the gap.
This book brings together five topics on the application of Boolean functions. They are 1. Equivalence classes of Boolean functions: The number of n-variable functions is large, even for values as small as n = 6, and there has been much research on classifying functions. There are many classifications, each with their own distinct merit. 2. Boolean functions for cryptography: The process of encrypting/decrypting plaintext messages often depends on Boolean functions with specific properties. For example, highly nonlinear functions are valued because they are less susceptible to linear attacks. 3. Boolean differential calculus: An operation analogous to taking the derivative of a real-valued f...
This book contains extended and revised versions of the best papers that were presented during the fifteenth edition of the IFIP/IEEE WG10.5 International Conference on Very Large Scale Integration, a global System-on-a-Chip Design & CAD conference. The 15th conference was held at the Georgia Institute of Technology, Atlanta, USA (October 15-17, 2007). Previous conferences have taken place in Edinburgh, Trondheim, Vancouver, Munich, Grenoble, Tokyo, Gramado, Lisbon, Montpellier, Darmstadt, Perth and Nice. The purpose of this conference, sponsored by IFIP TC 10 Working Group 10.5 and by the IEEE Council on Electronic Design Automation (CEDA), is to provide a forum to exchange ideas and show industrial and academic research results in the field of microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels, as well in the test of these systems. VLSI-SoC conferences aim to address these exciting new issues.