You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A compilation of detailed lecture notes on six topics at the forefront of current research in numerical analysis and applied mathematics. Each set of notes presents a self-contained guide to a current research area and has an extensive bibliography. In addition, most of the notes contain detailed proofs of the key results. The notes start from a level suitable for first year graduate students in applied mathematics, mathematical analysis or numerical analysis, and proceed to current research topics. The reader should therefore be able to quickly gain an insight into the important results and techniques in each area without recourse to the large research literature. Current (unsolved) problems are also described and directions for future research is given.
This book is a collection of papers presented at the 23rd International Conference on Domain Decomposition Methods in Science and Engineering, held on Jeju Island, Korea on July 6-10, 2015. Domain decomposition methods solve boundary value problems by splitting them into smaller boundary value problems on subdomains and iterating to coordinate the solution between adjacent subdomains. Domain decomposition methods have considerable potential for a parallelization of the finite element methods, and serve a basis for distributed, parallel computations.
This volume contains the proceedings of the Eighth International Conference on Scientific Computing and Applications, held April 1-4, 2012, at the University of Nevada, Las Vegas. The papers in this volume cover topics such as finite element methods, multiscale methods, finite difference methods, spectral methods, collocation methods, adaptive methods, parallel computing, linear solvers, applications to fluid flow, nano-optics, biofilms, finance, magnetohydrodynamics flow, electromagnetic waves, the fluid-structure interaction problem, and stochastic PDEs. This book will serve as an excellent reference for graduate students and researchers interested in scientific computing and its applications.
Domain decomposition is an active research area concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models of natural and engineered systems. The present volume sets forth new contributions in areas of numerical analysis, computer science, scientific and industrial applications, and software development.
These are the proceedings of the 20th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linearor nonlinear systems of algebraic equations that arise when various problems in continuum mechanics are discretized using finite elements. They are designed for massively parallel computers and take the memory hierarchy of such systems in mind. This is essential for approaching peak floating point performance. There is an increasingly well developed theory whichis having a direct impact on the development and improvements of these algorithms.
Domain decomposition is an active, interdisciplinary research field concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models. This volume contains selected papers presented at the 17th International Conference on Domain Decomposition Methods in Science and Engineering. It presents the newest domain decomposition techniques and examines their use in the modeling and simulation of complex problems.
This book introduces the mathematical concepts that underpin computer graphics. It is written in an approachable way, without burdening readers with the skills of ow to do'things. The author discusses those aspects of mathematics that relate to the computer synthesis of images, and so gives users a better understanding of the limitations of computer graphics systems. Users of computer graphics who have no formal training and wish to understand the essential foundations of computer graphics systems will find this book very useful, as will mathematicians who want to understand how their subject is used in computer image synthesis. '
Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives c...
This book presents the first survey of the Localized Orthogonal Decomposition (LOD) method, a pioneering approach for the numerical homogenization of partial differential equations with multiscale data beyond periodicity and scale separation. The authors provide a careful error analysis, including previously unpublished results, and a complete implementation of the method in MATLAB. They also reveal how the LOD method relates to classical homogenization and domain decomposition. Illustrated with numerical experiments that demonstrate the significance of the method, the book is enhanced by a survey of applications including eigenvalue problems and evolution problems. Numerical Homogenization by Localized Orthogonal Decomposition is appropriate for graduate students in applied mathematics, numerical analysis, and scientific computing. Researchers in the field of computational partial differential equations will find this self-contained book of interest, as will applied scientists and engineers interested in multiscale simulation.