You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Special topic volume with invited peer-reviewed papers only
The demand for advanced energy devices such as high-performance batteries, supercapacitors, fuel cells, electrolyzers, and flexible/wearable devices is increasing rapidly. To meet such demand, high-performance and stable materials that could be used as active materials in these devices are much needed. This book focuses on the use of hydrogels in such emerging applications. The main objective of this book is to provide current, state-of-the-art development in hydrogel-based materials, their applications in energy, and their future challenges. This book covers the entire spectrum of hydrogels for their applications in a range of energy devices in terms of materials, various synthetic approach...
Nanosensors for Smart Manufacturing provides information on the fundamental design concepts and emerging applications of nanosensors in smart manufacturing processes. In smart production, if the products and machines are integrated, embedded, or equipped with sensors, the system can immediately collect the current operating parameters, predict the product quality, and then feed back the optimal parameters to machines in the production line. In this regard, smart sensors and their wireless networks are important components of smart manufacturing. Nanomaterials-based sensors (nanosensors) offer several advantages over their microscale counterparts, including lower power consumption, fast respo...
Conversion of waste into value-added products such as energy transforms a potential environmental problem into a sustainable solution. Energy from Waste: Production and Storage focuses on the conversion of waste from various sources for use in energy production and storage applications. It provides the state-of-the-art in developing advanced materials and chemicals for energy applications using wastes and discusses the various treatment processes and technologies. Covers synthesis of usable materials from various types of waste and their application in energy production and storage Presents an overview and applications of wastes for green energy production and storage Provides fundamentals of electrochemical behavior and understanding of energy devices such as fuel cells, batteries, supercapacitors, and solar cells Elaborates on advanced technologies used to convert waste into green biochemical energy This work provides new direction to scientists, researchers, and students in materials and chemical engineering and related subjects seeking to sustainable solutions to energy production and waste management.
Conversion of waste into value-added products such as energy transforms a potential environmental problem into a sustainable solution. Energy from Waste: Production and Storage focuses on the conversion of waste from various sources for use in energy production and storage applications. It provides the state-of-the-art in developing advanced materials and chemicals for energy applications using wastes and discusses the various treatment processes and technologies. Covers synthesis of usable materials from various types of waste and their application in energy production and storage Presents an overview and applications of wastes for green energy production and storage Provides fundamentals of electrochemical behavior and understanding of energy devices such as fuel cells, batteries, supercapacitors, and solar cells Elaborates on advanced technologies used to convert waste into green biochemical energy This work provides new direction to scientists, researchers, and students in materials and chemical engineering and related subjects seeking to sustainable solutions to energy production and waste management.
None
The increasing interest in graphene, due to its unique properties and potential applications, is sparking intense research into chemically derived graphene. This book provides a comprehensive overview of the recent and state-of-the-art research on chemically derived graphene materials for different applications. Starting with a brief introduction on chemically derived graphene, subsequent chapters look at various fascinating applications such as electrode materials for fuel cells, Li/Na-ion batteries, metal–air batteries and Li-S batteries, photocatalysts for degradation of pollutants and solar-to-fuels conversion, biosensing platforms, and anti-corrosion coatings. The emphasis throughout this book is on experimental studies and the unique aspects of chemically derived graphene in these fields, including novel functionalization methods, particular physicochemical properties and consequently enhanced performance. With contributions from key researchers, the book provides a detailed resource on the latest progress and the future directions of chemically derived graphene for students and researchers across materials science, chemistry, nanoengineering and related fields.
The “bioelectronic nose”, the device which has a similar function to the human smell sensing system, can be realized by combining the olfactory cells or receptors with nanotechnology. In the last two decades, much has been learned about the smell sensing mechanism in biological systems. With knowledge about the biological olfactory system and the techniques for the expression of biological receptor proteins, we are able to utilize biological materials and systems to mimic the biological olfactory system. In addition to the advances in biological and biotechnological area, nanotechnology has progressed to a great degree. The bioelectronic nose is a good example of the integration of biotechnology and nanotechnology. This book describes basic biological sciences of the olfactory system, biotechnology for the production of olfactory biological elements, and nanotechnology for the development of various sensing devices. The purpose of this book is to provide the reader with a concept, basic sciences, fundamental technologies, applications, and perspectives of the bioelectronic nose.