You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The proteolytic enzymes have an essential function in all cells. Their activities are regulated by the rate of synthesis, activation of proenzymes and by the rate of synthesis of their inhibitors. They are synthesized in ribosomes like any other proteins and transported to various storage organelles or secreted from the cells and are activated in the pericellular space or in interstitium. Various cells and tissues have their characteristic enzyme patterns which serve their specific functions. Proteolytic enzymes take part and often have a regulatory role in numerous phases of cell function, e.g. cell division, migration, apoptotic as well as necrotic cell death etc. Diseases in which proteolysis has been subject of active research are e.g. cancer metastasis, viral infections, e.g. HIV, and Alzheimer's disease. They are also an essential part in any tissue remodelling, wound healing, throughout the kingdom of fauna and flora.
Nucleic acids are the fundamental building blocks of DNA and RNA and are found in virtually every living cell. Molecular biology is a branch of science that studies the physicochemical properties of molecules in a cell, including nucleic acids, proteins, and enzymes. Increased understanding of nucleic acids and their role in molecular biology will further many of the biological sciences including genetics, biochemistry, and cell biology. Progress in Nucleic Acid Research and Molecular Biology provides a forum for discussion of new discoveries, approaches, and ideas in molecular biology. It contains contributions from leaders in their fields and abundant references. - Provides a forum for discussion of new discoveries, approaches, and ideas in molecular biology - Features contributions from leaders in their fields - Contains abundant references
Today, as the large international genome sequence projects are gaining a great amount of public atte_ntion and huge sequence data bases are created it be comes more and more obvious that we are very limited in our ability to access functional data for the gene products - the proteins, in particular for enzymes. Those data are inherently very difficult to collect, interpret and standardize as they are highly distributed among journals from different fields and are often sub ject to experimental conditions. Nevertheless a systematic collection is essential for our interpretation of the genome information and more so for possible appli cations of this knowledge in the fields of medicine, agricu...
An essential resource for all scientists researching cellular responses to DNA damage. • Introduces important new material reflective of the major changes and developments that have occurred in the field over the last decade. • Discussed the field within a strong historical framework, and all aspects of biological responses to DNA damage are detailed. • Provides information on covering sources and consequences of DNA damage; correcting altered bases in DNA: DNA repair; DNA damage tolerance and mutagenesis; regulatory responses to DNA damage in eukaryotes; and disease states associated with defective biological responses to DNA damage.
Extensively revised and updated, the new edition of the highly regarded Handbook of Proteolytic Enzymes is an essential reference for biochemists, biotechnologists and molecular biologists. Edited by world-renowned experts in the field, this comprehensive work provides detailed information on all known proteolytic enzymes to date. This two-volume set unveils new developments on proteolytic enzymes which are being investigatedin pharmaceutical research for such diseases as HIV, Hepatitis C, and the common cold. Volume I covers aspartic and metallo petidases while Volume II examines peptidases of cysteine, serine, threonine and unknown catalytic type. A CD-ROM accompanies the book containing f...
Zusammenfassung: This volume provides in depth reviews of the protein targeting translocation processes, gene transfer processes and genome reduction processes in the host and in the endosymbiont which were likely utilized during the evolution of an endosymbiont into mitochondria, mitochondria related organelles, simple and complex chloroplasts. These reviews cover both the current understanding of the host processes as well as the evolutionary outcomes used by these organelles for protein targeting and translocation. Reviews of the current knowledge of these topics are plentiful but scattered throughout the bacterial, parasite, plant and animal literature; here, reviews of current knowledge with evolutionary outcomes and future perspectives, written by leading researchers in their respective areas, are united into one comprehensive volume, essential for students and scientists interested in or working on subcellular protein localization, protein targeting signals, translocation of proteins across and insertion into membranes, nucleic acid transfer between genomes, genome reduction and evolution of mitochondria and chloroplast.
A collection of daily devotional readings to help teenagers deal with common problems and concerns.
Biological membranes provide the fundamental structure of cells and viruses. Because much of what happens in a cell or in a virus occurs on, in, or across biological membranes, the study of membranes has rapidly permeated the fields of biology, pharmaceutical chemistry, and materials science. The Structure of Biological Membranes, Third Edition pro
Liposomes are cellular structures made up of lipid molecules. Important as a cellular model in the study of basic biology, liposomes are also used in clinical applications such as drug delivery and virus studies. - Liposomes in Biochemistry - Liposomes in Molecular Cell Biology - Liposomes in Molecular Virology
Covering the major classes of posttranslational modifications, Posttranslational Modification of Proteins is the first comprehensive treatment of this burgeoning area of proteome diversification.