You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Advanced Catalysts Based on Metal-organic Frameworks is a comprehensive introduction to advanced catalysts based on MOFs. It covers basic information about MOF catalysts with industrial and environmental applications. The detailed chapters update readers on current applications and strategies to apply MOF-based catalysts in industrial processes geared for sustainability initiatives such as renewable energy, pollution control and combating carbon emissions. Key Features of Part 2 - 7 structured, easy to read chapters that comprehensively cover specific applications of MOF catalysts- In-depth explanation of photocatalytic reactions for multifunctional electrocatalysis, water splitting and CO2 Capture - Notes on MOF materials used in modern processes - Explanation of MOFs in advanced oxidation reactions - Introduction to Electrochemical biosensors - Updated references for advanced readers The is an essential reference for chemical engineers, scientists in the manufacturing and sustainability industry and post-graduate scholars working on MOFs and chemical catalysis.
Advanced Catalysts Based on Metal-organic Frameworks is a comprehensive introduction to advanced catalysts based on MOFs. It covers basic information about MOF catalysts with industrial and environmental applications. It updates readers on current applications and strategies to apply MOF-based catalysts in industrial processes geared for sustainability initiatives such as renewable energy, pollution control and combating carbon emission. Key Features - 13 structured, easy to read chapters that comprehensively cover MOF catalysts - An introduction to basic information about MOF catalysts - In-depth coverage of advanced applications of MOF catalysts - Explanation of MOF modifications and applications of derivative compounds - In-depth coverage of MOF catalysts used for electrocatalysis and photocatalysis - Detailed explanation of environmental-friendly and sustainable technologies (biomass upgrading, water purification, CO2 capture) - Updated references for advanced readers The is an essential reference for chemical engineers, scientists in the manufacturing and sustainability industry and post-graduate scholars working on MOFs and chemical catalysis.
This excellent book represents the final part of three-volumes regarding MATLAB-based applications in almost every branch of science. The book consists of 19 excellent, insightful articles and the readers will find the results very useful to their work. In particular, the book consists of three parts, the first one is devoted to mathematical methods in the applied sciences by using MATLAB, the second is devoted to MATLAB applications of general interest and the third one discusses MATLAB for educational purposes. This collection of high quality articles, refers to a large range of professional fields and can be used for science as well as for various educational purposes.
Mathematical Methods in Medical and Biological Sciences presents mathematical methods for computational models arising in the medical and biological sciences. The book presents several real-life medical and biological models, such as infectious and non-infectious diseases that can be modeled mathematically to accomplish profound research in virtual environments when the cost of laboratory expenses is relatively high. It focuses on mathematical techniques that provide global solutions for models arising in medical and biological sciences by considering their long-term benefits. In addition, the book provides leading-edge developments and insights for a range of applications, including epidemi...
Metal-Organic Frameworks for Biomedical Applications is a comprehensive, authoritative reference that offers a substantial and complete treatment of published results that have yet to be critically reviewed. It offers a summary of current research and provides in-depth understanding of the role of metal-organic frameworks in biomedical engineering. The title consists of twenty-two chapters presented by leading international researchers in the field. Chapters are arranged by target-application in biomedical engineering, allowing medical and pharmaceutic specialists to translate current materials and engineering science on metal-organic frameworks into their work.
Bioengineered Nanomaterials for Wound Healing and Infection Control is a key reference for those working in the fields of materials science, pharmacy, nanotechnology, biomedical engineering and microbiology. Bioengineered nanomaterials have unique physicochemical properties which promote accelerated wound healing and treatment of infections. The biosynthesis of these nanomaterials also offers a clean, safe and renewable alternative to traditional nanomaterials, helping reduce environmental impact alongside antibacterial resistance. - Provides an overview of the role of biofilms and multidrug resistance in wound infections - Covers a range of bioengineered nanomaterial types and nanotechnology-based approaches, including phyconanotechnology, phytonanotechnology and microbial nanotechnology - Helps readers discover novel materials for use in wound healing and infection control while reducing the probability of antibiotic resistance
Nanotechnology is a vibrant area of research and a growing industry. The core scientific principles and applications of this interdisciplinary field bring together chemists, physicists, materials scientists, and engineers to meet the potential future challenges for sustainable development through new technologies and preparation of advanced materials with sustainable environmental protection. This book on Nanotechnology and the Environment includes the design and the sophisticated fabrication of nanomaterials along with their potential energy and environmental applications. This book is a significant contribution towards the development of the knowledge for all advanced undergraduate, graduate level students, researchers, and professional engineers leading in the fields of nanotechnology, nanochemistry, macromolecular science and those who have interest in energy and environmental science.
With the recent shift of chemical fertilizers and pesticides to organic agriculture, the employment of microbes that perform significant beneficial functions for plants has been highlighted. This book presents timely discussion and coverage on the use of microbial formulations, which range from powdered or charcoal-based to solution and secondary metabolite-based bioformulations. Bioformulation development of biofertilizers and biopesticides coupled with the advantages of nanobiotechnology propose significant applications in the agricultural section including nanobiosensors, nanoherbicides, and smart transport systems for the regulated release of agrochemical. Moreover, the formulation of se...