You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the papers presented at the Scandinavian Conference on Image Analysis, SCIA 2009, which was held at the Radisson SAS Scandinavian Hotel, Oslo, Norway, June 15–18. SCIA 2009 was the 16th in the biennial series of conferences, which has been organized in turn by the Scandinavian countries Sweden, Finland, D- mark and Norway since 1980. The event itself has always attracted participants and author contributions from outside the Scandinavian countries, making it an international conference. Theconferenceincludedafulldayoftutorialsand?vekeynotetalksprovided by world-renowned experts. The program covered high-quality scienti?c cont- butions within image analysis, human and a...
The two-volume set LNCS 10269 and 10270 constitutes the refereed proceedings of the 20th Scandinavian Conference on Image Analysis, SCIA 2017, held in Tromsø, Norway, in June 2017. The 87 revised papers presented were carefully reviewed and selected from 133 submissions. The contributions are structured in topical sections on history of SCIA; motion analysis and 3D vision; pattern detection and recognition; machine learning; image processing and applications; feature extraction and segmentation; remote sensing; medical and biomedical image analysis; faces, gestures and multispectral analysis.
This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.
The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
This book constitutes the refereed proceedings of the 4th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2003, held in Lisbon, Portugal in July 2003. The 33 revised full papers presented were carefully reviewed and selected from 66 submissions. The papers are organized in topical sections on unsupervised learning and matching, probabilistic modeling, segmentation and grouping, shape modeling, restoration and reconstruction, and graphs and graph-based methods.
Fuzzy systems and data mining are indispensible aspects of the computer systems and algorithms on which the world has come to depend. This book presents papers from FSDM 2021, the 7th International Conference on Fuzzy Systems and Data Mining. The conference, originally due to take place in Seoul, South Korea, was held online on 26-29 October 2021, due to ongoing restrictions connected with the COVID-19 pandemic. The annual FSDM conference provides a platform for knowledge exchange between international experts, researchers, academics and delegates from industry. This year, the committee received 266 submissions, and this book contains 52 papers, including keynotes and invited presentations, ...
This book highlights the latest advances in the application of artificial intelligence and data science in health care and medicine. Featuring selected papers from the 2020 Health Intelligence Workshop, held as part of the Association for the Advancement of Artificial Intelligence (AAAI) Annual Conference, it offers an overview of the issues, challenges, and opportunities in the field, along with the latest research findings. Discussing a wide range of practical applications, it makes the emerging topics of digital health and explainable AI in health care and medicine accessible to a broad readership. The availability of explainable and interpretable models is a first step toward building a culture of transparency and accountability in health care. As such, this book provides information for scientists, researchers, students, industry professionals, public health agencies, and NGOs interested in the theory and practice of computational models of public and personalized health intelligence.
This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.
This book contains the extended and revised versions of a set of selected papers from the 2nd International Conference on Pattern Recognition (ICPRAM 2013), held in Barcelona, Spain, from 15 to 18 February, 2013. ICPRAM was organized by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and was held in cooperation with the Association for the Advancement of Artificial Intelligence (AAAI). The hallmark of this conference was to encourage theory and practice to meet in a single venue. The focus of the book is on contributions describing applications of Pattern Recognition techniques to real-world problems, interdisciplinary research, experimental and/or theoretical studies yielding new insights that advance Pattern Recognition methods.
Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment ...