You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"Written by two renowned experts in the field, the books under review contain a thorough and insightful treatment of the fundamental underpinnings of various aspects of stochastic processes as well as a wide range of applications. Providing clear exposition, deep mathematical results, and superb technical representation, they are masterpieces of the subject of stochastic analysis and nonlinear filtering....These books...will become classics." --SIAM REVIEW
These volumes cover non-linear filtering (prediction and smoothing) theory and its applications to the problem of optimal estimation, control with incomplete data, information theory, and sequential testing of hypothesis. Also presented is the theory of martingales, of interest to those who deal with problems in financial mathematics. These editions include new material, expanded chapters, and comments on recent progress in the field.
Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.
Direct and to the point, this book from one of the field's leaders covers Brownian motion and stochastic calculus at the graduate level, and illustrates the use of that theory in various application domains, emphasizing business and economics. The mathematical development is narrowly focused and briskly paced, with many concrete calculations and a minimum of abstract notation. The applications discussed include: the role of reflected Brownian motion as a storage model, queuing model, or inventory model; optimal stopping problems for Brownian motion, including the influential McDonald-Siegel investment model; optimal control of Brownian motion via barrier policies, including optimal control of Brownian storage systems; and Brownian models of dynamic inference, also called Brownian learning models or Brownian filtering models.
These volumes cover non-linear filtering (prediction and smoothing) theory and its applications to the problem of optimal estimation, control with incomplete data, information theory, and sequential testing of hypothesis. Also presented is the theory of martingales, of interest to those who deal with problems in financial mathematics. These editions include new material, expanded chapters, and comments on recent progress in the field.
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.
"Written by two renowned experts in the field, the books under review contain a thorough and insightful treatment of the fundamental underpinnings of various aspects of stochastic processes as well as a wide range of applications. Providing clear exposition, deep mathematical results, and superb technical representation, they are masterpieces of the subject of stochastic analysis and nonlinear filtering....These books...will become classics." --SIAM REVIEW
Author of the acclaimed work Iceberg Risk: An Adventure in Portfolio Theory, Kent Osband argues that uncertainty is central rather than marginal to finance. Markets don't trade mainly on changes in risk. They trade on changes in beliefs about risk, and in the process, markets unite, stretch, and occasionally defy beliefs. Recognizing this truth would make a world of difference in investing. Belittling uncertainty has created a rift between financial theory and practice and within finance theory itself, misguiding regulation and stoking huge financial imbalances. Sparking a revolution in the mindset of the investment professional, Osband recasts the market as a learning machine rather than a knowledge machine. The market continually errs, corrects itself, and makes new errors. Respecting that process, without idolizing it, will promote wiser investment, trading, and regulation. With uncertainty embedded at its core, Osband's rational approach points to a finance theory worthy of twenty-first-century investing.
Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity prem...
Written by Lars Peter Hansen (Nobel Laureate in Economics, 2013) and Thomas Sargent (Nobel Laureate in Economics, 2011), Uncertainty within Economic Models includes articles adapting and applying robust control theory to problems in economics and finance. This book extends rational expectations models by including agents who doubt their models and adopt precautionary decisions designed to protect themselves from adverse consequences of model misspecification. This behavior has consequences for what are ordinarily interpreted as market prices of risk, but big parts of which should actually be interpreted as market prices of model uncertainty. The chapters discuss ways of calibrating agents' fears of model misspecification in quantitative contexts.