You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
This book teaches the principles of soil mechanics to undergraduates, along with other properties of engineering materials, to which the students are exposed simultaneously. Using the critical state method of soil mechanics to study the mechanical behavior of soils requires the student to consider density alongside effective stresses, permitting the unification of deformation and strength characteristics. This unification aids the understanding of soil mechanics. This book explores a one-dimensional theme for the presentation of many of the key concepts of soil mechanics - density, stress, stiffness, strength, and fluid flow - and includes a chapter on the analysis of one-dimensional consolidation, which fits nicely with the theme of the book. It also presents some theoretical analyses of soil-structure interaction, which can be analyzed using essentially one-dimensional governing equations. Examples are given at the end of most chapters, and suggestions for laboratory exercises or demonstrations are given.
Today, war is considered a last resort for resolving disagreements. But a day of staged slaughter on the battlefield was once seen as a legitimate means of settling political disputes. James Whitman argues that pitched battle was essentially a trial with a lawful verdict. And when this contained form of battle ceased to exist, the law of victory gave way to the rule of unbridled force. The Verdict of Battle explains why the ritualized violence of the past was more effective than modern warfare in bringing carnage to an end, and why humanitarian laws that cling to a notion of war as evil have led to longer, more barbaric conflicts. Belief that sovereigns could, by rights, wage war for profit ...
The movement of groundwater is a basic part of soil mechanics. It is an important part of almost every area of civil engineering, agronomy, geology, irrigation, and reclamation. Moreover, the logical structure of its theory appeals to engineering scientists and applied mathematicians. This book aims primarily at providing the engineer with an organized and analytical approach to the solutions of seepage problems and an understanding of the design and analysis of earth structures that impound water. It can be used for advanced courses in civil, hydraulic, agricultural, and foundation engineering, and will prove useful to consulting engineers — or any public or private agency responsible for building or maintaining water storage or control systems. Among the special features of this book are its coverage of previously unavailable Russian work in the field, an extensive appendix of concepts in advanced engineering mathematics needed to deal with physical flow systems, and numerous completely worked-out and solved examples coupled with over 200 problems of varying difficulty.
Knowledge of the behavior of soil mechanics is essential for forecasting the internal displacements and actions of any construction. This book, although theoretical at first glance, also offers a more practical scope, giving readers adequate tools to plan geotechnical projects correctly.
An exposition of the derivation and use of equations of motion for two-phase flow. The approach taken derives the equations of motion using ensemble averaging, and compares them with those derived from control volume methods. Closure for dispersed flows is discussed, and some fundamental solutions are given. The work focuses on the fundamental aspects of two-phase flow, and is intended to give the reader a background for understanding the dynamics as well as a system of equations that can be used in predictions of the behavior of dispersed two-phase flows. The exposition in terms of ensemble averaging is new, and combining it with modern continuum mechanics concepts makes this book unique. Intended for engineering, mathematics and physics researchers and advanced graduate students working in the field.