You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is an introduction to the mathematical analysis of Bayesian decision-making when the state of the problem is unknown but further data about it can be obtained. The objective of such analysis is to determine the optimal decision or solution that is logically consistent with the preferences of the decision-maker, that can be analyzed using numerical utilities or criteria with the probabilities assigned to the possible state of the problem, such that these probabilities are updated by gathering new information.
This book aims to provide a concise account of the essential elements of quality control. It is designed to be used as a text for courses on quality control for students of industrial engineering at the advanced undergraduate, or as a reference for researchers in related fields seeking a concise treatment of the key concepts of quality control. It is intended to give a contemporary account of procedures used to design quality models.
Dynamic programming and Bayesian inference have been both intensively and extensively developed during recent years. Because of these developments, interest in dynamic programming and Bayesian inference and their applications has greatly increased at all mathematical levels. The purpose of this book is to provide some applications of Bayesian optimization and dynamic programming.
This book constitutes the refereed proceedings of the 18th Annual Conference on Towards Autonomous Robotics, TAROS 2017, held in Guildford, UK, in July 2017. The 43 revised full papers presented together with 13 short papers were carefully reviewed and selected from 66 submissions. The papers discuss robotics research drawn from a wide and diverse range of topics, such as swarm and multi-robotic systems; human-robot interaction; robotic learning and imitation; robot navigation, planning and safety; humanoid and bio-inspired robots; mobile robots and vehicles; robot testing and design; detection and recognition; learning and adaptive behaviours; interaction; soft and reconfigurable robots; and service and industrial robots.
A road traffic participant is a person who directly participates in road traffic, such as vehicle drivers, passengers, pedestrians, or cyclists, however, traffic accidents cause numerous property losses, bodily injuries, and even deaths to them. To bring down the rate of traffic fatalities, the development of the intelligent vehicle is a much-valued technology nowadays. It is of great significance to the decision making and planning of a vehicle if the pedestrians' intentions and future trajectories, as well as those of surrounding vehicles, could be predicted, all in an effort to increase driving safety. Based on the image sequence collected by onboard monocular cameras, we use the Long Sho...
This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI.
This book gathers authoritative contributions in the field of Soft Computing. Based on selected papers presented at the 7th World Conference on Soft Computing, which was held on May 29–31, 2018, in Baku, Azerbaijan, it describes new theoretical advances, as well as cutting-edge methods and applications. New theories and algorithms in fuzzy logic, cognitive modeling, graph theory and metaheuristics are discussed, and applications in data mining, social networks, control and robotics, geoscience, biomedicine and industrial management are described. This book offers a timely, broad snapshot of recent developments, including thought-provoking trends and challenges that are yielding new research directions in the diverse areas of Soft Computing.
The Internet of Vehicles (IoV) is referred to as an efficient and inevitable convergence of the Internet of Things, intelligent transportation systems, edge / fog and cloud computing, and big data, all of which could be intelligently harvested for the cooperative vehicular safety and non-safety applications as well as cooperative mobility management. A secure and low-latency communication is, therefore, indispensable to meet the stringent performance requirements of the safety-critical vehicular applications. Whilst the challenges surrounding low latency are being addressed by the researchers in both academia and industry, it is the security of an IoV network which is of paramount importance...
Automobiles have played an important role in the shaping of the human civilization for over a century and continue to play a crucial role today. The design, construction, and performance of automobiles have evolved over the years. For many years, there has been a strong shift toward electrification of automobiles. It started with the by-wire systems where more efficient electro-mechanical subsystems started replacing purely mechanical devices, e.g., anti-lock brakes, drive-by-wire, and cruise control. Over the last decade, driven by a strong push for fuel efficiency, pollution reduction, and environmental stewardship, electric and hybrid electric vehicles have become quite popular. In fact, ...
This book studies the design optimization, state estimation, and advanced control methods for cyber-physical vehicle systems (CPVS) and their applications in real-world automotive systems. First, in Chapter 1, key challenges and state-of-the-art of vehicle design and control in the context of cyber-physical systems are introduced. In Chapter 2, a cyber-physical system (CPS) based framework is proposed for high-level co-design optimization of the plant and controller parameters for CPVS, in view of vehicle's dynamic performance, drivability, and energy along with different driving styles. System description, requirements, constraints, optimization objectives, and methodology are investigated. In Chapter 3, an Artificial-Neural-Network-based estimation method is studied for accurate state estimation of CPVS. In Chapter 4, a high-precision controller is designed for a safety-critical CPVS. The detailed control synthesis and experimental validation are presented. The application results presented throughout the book validate the feasibility and effectiveness of the proposed theoretical methods of design, estimation, control, and optimization for cyber-physical vehicle systems.