You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Magnetic Resonance Microscopy Explore the interdisciplinary applications of magnetic resonance microscopy in this one-of-a-kind resource In Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research, a team of distinguished researchers delivers a comprehensive exploration of the use of magnetic resonance microscopy (MRM) and similar techniques in an interdisciplinary milieux. Opening with a section on hardware and methodology, the book moves on to consider developments in the field of mobile nuclear magnetic resonance. Essential processes, including filtration, multi-phase flow and transport, and a wide range of systems – from biomarker...
Field-cycling NMR relaxometry is evolving into a methodology of widespread interest. Aimed at newcomers to the field and researchers in academia and industry, this book will summarise the expertise of leading scientists in the area.
Whilst heavy metal phytotoxicity has been known for more than a century, it is astonishing that interest in the effects of heavy metals on organisms has only recently received added attention. Research in the past years, however, has confirmed the immense damage by metal pollution to plants, the soil and ultimately to humans. This completely updated and enlarged second edition gives a state-of-the art review on both field and laboratory work. It deals with the various functional and ecological aspects of heavy metal stress on plants and outlines the scope for future research and the possibilities for remediation.
The goal of this book is to provide an introduction to the practical use of mobile NMR at a level as basic as the operation of a smart phone. Each description follows the same didactic pattern: introduction, basic theory, pulse sequences and parameters, beginners-level measurements, advanced-level measurements, and data processing. Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue depicting the brain function and the beating heart. In both applications large super-conducting mag...
None
Scattering Methods and their Application in Colloid and Interface Science offers an overview of small-angle X-ray and neutron scattering techniques (SAXS & SANS), as well as static and dynamic light scattering (SLS & DLS). These scattering techniques are central to the study of soft matter, such as colloidal dispersions and surfactant self-assembly. The theoretical concepts are followed by an overview of instrumentation and a detailed description of the evaluation techniques in the first part of the book. In the second part, several typical application examples are used to show the strength and limitations of these techniques. - Features the latest input from the world-leading expert with personal experience in all the fields covered (SAXS, SANS, SLS and DLS) - Includes unified notation throughout the book to enhance its readability - Provides—in a single source—scattering theory, evaluation of techniques and a variety of applications
The goal of this book is to provide an introduction to the practical use of mobile NMR at a level as basic as the operation of a smart phone. Each description follows the same didactic pattern: introduction, basic theory, pulse sequences and parameters, beginners-level measurements, advanced-level measurements, and data processing. Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue depicting the brain function and the beating heart. In both applications large super-conducting mag...
Dieses Buch ist Teil unserer neuen Datenbank Anorganik Online. Das Trennen eines Gemisches in seine einzelnen Komponenten ist eines der grundlegendsten Verfahrender Analytischen und Technischen Chemie. Dieses klassische Lehrbuch der Analytischen Chemie bietet eine zugleich umfassende und doch systematische Gliederung aller bekannten Trennverfahren. Durch seine ausführliche Behandlung der Grundprinzipien der Separationsmöglichkeiten erfasst es nicht nur das derzeit Bekannte, sondern stellt zugleich eine Fundgrube für Verfahren dar, die noch einer Weiterentwicklung harren. Das Lehrbuch ist klar strukturiert und enthält interessante Beispiele, weiterführende Literatur und ein ausführliches Register. Ein unverzichtbares Buch für fortgeschrittene Studenten der Naturwissenschaften (Chemie, Biochemie, Lebensmittelchemie, Pharmazie, Klinische Chemie, Umweltwissenschaften) und Technik (Chemische Verfahrenstechnik, Chemisch-physikalische Meßtechnik & Biotechnologie), sowie Lehrende dieser Disziplinen.