You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Based on the authors' groundbreaking research, Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology presents a research ideology, a novel multi-paradigm methodology, and advanced computational models for the automated EEG-based diagnosis of neurological disorders. It is based on the ingenious integration of thr
Advanced technologies have been transforming the ways we carry out biological studies as well as deliver healthcare. While micro- and nano-fabrication have provided miniaturized sensors and systems with better sensitivity and selectivity,; innovations in flexible electronics, biomaterials and telecommunications have helped in enabling novel biomedical devices, reducing cost, bringing convenience and establishing mobile-health (m-Health), and personalized- and tele-medicine. Further, the recent rise of the internet of things (IoTs) and machine learning-based approaches has paved the avenue for those biomedical systems to become popular and widely accepted by our society. In this context, we edit this book aiming to cover a broad field of novel technologies used in biological assessment and analysis for humans, animal models and in vitro platforms, in both health monitoring and biological studies. Technical topics discussed in the book include: Biosensing systems and biomedical techniques Imaging techniques and systems Biosignal analysis Animal models used in biological research
Regular developments in technology continue to influence the medical and healthcare fields as they interact with information and computer sciences by methods of acquisition and the storage and retrieval of information. Methods, Models, and Computation for Medical Informatics is a comprehensive collection of research on computational capabilities, prototypes, and algorithms, as well as application in the areas of nursing, clinical care, public health, biomedical research, and much more. This book provides a better understanding of the models and methods used in the field of medicine for researchers, practitioners, and medical professionals alike.
Medicine has, until recently, been slow to adapt to information technologies and systems for many reasons, but the future lies therein.Innovations in Data Methodologies and Computational Algorithms for Medical Applications offers the most cutting-edge research in the field, offering insights into case studies and methodologies from around the world. The text details the latest developments and will serve as a vital resource to practitioners and academics alike in the burgeoning field of medical applications of technologies. As security and privacy improve, Electronic Health Records and informatics in the medical field are becoming ubiquitous, and staying abreast of the latest information can be difficult. This volume serves as a reference handbook and theoretical framework for the future of the field.
This book constitutes the proceedings of the second International Workshop on Advanced Computational Intelligence (IWACI 2009), with a sequel of IWACI 2008 successfully held in Macao, China. IWACI 2009 provided a high-level international forum for scientists, engineers, and educators to present state-of-the-art research in computational intelligence and related fields. Over the past decades, computational intelligence community has witnessed t- mendous efforts and developments in all aspects of theoretical foundations, archit- tures and network organizations, modelling and simulation, empirical study, as well as a wide range of applications across different domains. IWACI 2009 provided a gre...
Video Based Machine Learning for Traffic Intersections describes the development of computer vision and machine learning-based applications for Intelligent Transportation Systems (ITS) and the challenges encountered during their deployment. This book presents several novel approaches, including a two-stream convolutional network architecture for vehicle detection, tracking, and near-miss detection; an unsupervised approach to detect near-misses in fisheye intersection videos using a deep learning model combined with a camera calibration and spline-based mapping method; and algorithms that utilize video analysis and signal timing data to accurately detect and categorize events based on the ph...
Towards Neuromorphic Machine Intelligence: Spike-Based Representation, Learning, and Applications provides readers with in-depth understanding of Spiking Neural Networks (SNNs), which is a burgeoning research branch of Artificial Neural Networks (ANNs), AI, and Machine Learning that sits at the heart of the integration between Computer Science and Neural Engineering. In recent years, neural networks have re-emerged in relation to AI, representing a well-grounded paradigm rooted in disciplines from physics and psychology to information science and engineering.This book represents one of the established cross-over areas where neurophysiology, cognition, and neural engineering coincide with the...
Modeling and Optimization of Signals using Machine Learning Techniques is designed for researchers from academia, industries, and R&D organizations worldwide who are passionate about advancing machine learning methods, signal processing theory, data mining, artificial intelligence, and optimization. This book addresses the role of machine learning in transforming vast signal databases from sensor networks, internet services, and communication systems into actionable decision systems. It explores the development of computational solutions and novel models to handle complex real-world signals such as speech, music, biomedical data, and multimedia. Through comprehensive coverage of cutting-edge techniques, this book equips readers with the tools to automate signal processing and analysis, ultimately enhancing the retrieval of valuable information from extensive data storage systems. By providing both theoretical insights and practical guidance, the book serves as a comprehensive resource for researchers, engineers, and practitioners aiming to harness the power of machine learning in signal processing.
Vols. 29-30 contain papers of the International Engineering Congress, Chicago, 1893; v. 54, pts. A-F, papers of the International Engineering Congress, St. Louis, 1904.