You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Advanced technologies have been transforming the ways we carry out biological studies as well as deliver healthcare. While micro- and nano-fabrication have provided miniaturized sensors and systems with better sensitivity and selectivity,; innovations in flexible electronics, biomaterials and telecommunications have helped in enabling novel biomedical devices, reducing cost, bringing convenience and establishing mobile-health (m-Health), and personalized- and tele-medicine. Further, the recent rise of the internet of things (IoTs) and machine learning-based approaches has paved the avenue for those biomedical systems to become popular and widely accepted by our society. In this context, we edit this book aiming to cover a broad field of novel technologies used in biological assessment and analysis for humans, animal models and in vitro platforms, in both health monitoring and biological studies. Technical topics discussed in the book include: Biosensing systems and biomedical techniques Imaging techniques and systems Biosignal analysis Animal models used in biological research
This is the first book to present the idea of using Industry 4.0 and smart manufacturing in the microalgae industry for environmental biotechnology. It provides the latest developments on microalgae for use in environmental biotechnology, explains process analysis from an engineering point of view, and discusses the transition to smart manufacturing and how state of the art technologies can be incorporated. It covers applications, technologies, challenges, and future perspectives. • Showcases how Industry 4.0 can be applied in algae industry • Covers new ideas generated from Industry 4.0 for Industrial Internet of Things (IIoT) • Demonstrates new technologies invented to cater to Industry 4.0 in microalgae • Features worked examples related to biological systems Aimed at chemical engineers, bioengineers, and environmental engineers, this is an essential resource for researchers, academics, and industry professionals in the microalgae biotechnology field.
With its exploration of the scientific and technological characteristics of systems exploiting molecular recognition between synthetic materials, such as polymers and nanoparticles, and biological entities, this is a truly multidisciplinary book bridging chemistry, life sciences, pharmacology and medicine. The authors introduce innovative biomimetic chemical assemblies which constitute platforms for recruitment of cellular components or biological molecules, while also focusing on physical, chemical, and biological aspects of biomolecular recognition. The diverse applications covered include biosensors, cell adhesion, synthetic receptors, cell patterning, bioactive nanoparticles, and drug design.
Algae Refinery: Up- and Downstream Processes offers complete coverage of algae refinery, including up- and downstream processes while proposing an integrated algal refinery for the advancement of existing technologies and summarizing the strategies and future perspectives of algal refinery. It provides a concise introduction to the algal science, biology, technology, and application of algae. It explains downstream and upstream steps of algal refinery for the production of algal biomass, with several social benefits. Features: Provides various aspects of algal bioprocess including upstream and downstream processes Explains the major research streams of algae structures and their pathways Covers algal-based CO2 capture technology Explores the potential applications of algae for socioeconomical benefits Deliberates algal bioremediation approach for clean and sustainable development
This volume, contributed to by a group of 46 research scientists and engineers, focuses on the integration of two aspects of plant biotechnology - the basic plant science and applied bioprocess engineering. Included in this book are 17 chapters, each dealing with specific topics of current interest with three coherent themes of: plant gene expression, regulation and manipulation; plant cell physiology and metabolism and their regulation; and bioprocess engineering and bioreactor performance of plant cell cultures. All of these topics are integrated into a main theme of "enabling plant biotechnology" relevant to the production of secondary metabolites. This book will be of great value to all plant cell biologists and molecular geneticists, and all those interested in the integration of plant science and bioprocess engineering for development of enabling technology relevant to the production of plant secondary metabolites.
This volume presents the proceedings of the Fifth International Conference on the Development of Biomedical Engineering in Vietnam which was held from June 16-18, 2014 in Ho Chi Minh City. The volume reflects the progress of Biomedical Engineering and discusses problems and solutions. I aims identifying new challenges, and shaping future directions for research in biomedical engineering fields including medical instrumentation, bioinformatics, biomechanics, medical imaging, drug delivery therapy, regenerative medicine and entrepreneurship in medical devices.
Biofuels and bioenergy have emerged as an alternative option based on their sustainability, concomitant waste treatment, and site-specific flexibility. This book encompasses all the knowhow of different biofuel production processes through biological methods. It describes recent advancements in all major biofuel technologies such as biohydrogen, biomethane, bioethanol, syngas and so forth. Related protocols supported by schematic representation are included, encompassing comprehensive up-to-date scientific and technological information in biofuels and bioenergy. Features: Includes practical approaches focused on process design and analysis in biofuel production via biological routes Discusses kinetic equations of different microbial systems Provides comprehensive coverage of biochemical kinetics and equations related to biofuel process Describes protocols for setting up of experiments for pertinent biofuel technologies Emphasis on practical engineering approaches and experiments This book is aimed at researchers and graduate students in chemical, biochemical and bioprocess engineering, and biofuels.
With more than 40 contributions from expert authors, this is an extensive overview of all important research topics in the field of bioengineering, including metabolic engineering, biotransformations and biomedical applications. Alongside several chapters dealing with biotransformations and biocatalysis, a whole section is devoted to biofuels and the utilization of biomass. Current perspectives on synthetic biology and metabolic engineering approaches are presented, involving such example organisms as Escherichia coli and Corynebacterium glutamicum, while a further section covers topics in biomedical engineering including drug delivery systems and biopharmaceuticals. The book concludes with ...
None