You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This Solution Manual, a companion volume of the book, Fundamentals of Solid-State Electronics, provides the solutions to selected problems listed in the book. Most of the solutions are for the selected problems that had been assigned to the engineering undergraduate students who were taking an introductory device core course using this book.This Solution Manual also contains an extensive appendix which illustrates the application of the fundamentals to solutions of state-of-the-art transistor reliability problems which have been taught to advanced undergraduate and graduate students.
None
None
Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive MEMS transducers. Discusses relevant applications of strain while also focusing on the fundamental physics pertaining to bulk, planar, and scaled nano-devices. Hence, this book is relevant for current strained Si logic technology as well as for understanding the physics and scaling for future strained nano-scale devices.
SiGe HBTs are the most mature of the Si heterostructure devices and not surprisingly the most completely researched and discussed in the technical literature. However, new effects and nuances of device operation are uncovered year-after-year as transistor scaling advances and application targets march steadily upward in frequency and sophistication. Providing a comprehensive treatment of SiGe HBTs, Silicon Heterostructure Devices covers an amazingly diverse set of topics, ranging from basic transistor physics to noise, radiation effects, reliability, and TCAD simulation. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this text explores SiGe heterojunction bi...
Additive manufacturing, also called rapid prototyping or 3D printing is a disruptive manufacturing technique with a significant impact in electronics. With 3D printing, bulk objects with circuitry are embedded in the volume of an element or conformally coated on the surface of existing parts, allowing design and manufacturing of smaller and lighter products with fast customisation. The book covers both materials selection and techniques. The scope also covers the research areas of additive manufacturing of passive and active components, sensors, energy storage, bioelectronics and more.
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation en...