You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Drawing on the authors' research work from the last ten years, Mathematical Inequalities: A Perspective gives readers a different viewpoint of the field. It discusses the importance of various mathematical inequalities in contemporary mathematics and how these inequalities are used in different applications, such as scientific modeling.The authors
Gronwall type integral inequalities of one variable for real functions play a very important role in the Qualitative Theory of Differential Equations. The main aim of the present research monograph is to present some natural applications of Gronwall inequalities with non-linear kernels of Lipschitz type of the problems of boundedness and convergence to zero at infinity of the solutions of certain Volterra integral equations. Stability, uniform stability, uniform asymptotic stability and global asymptotic stability properties for trivial solution of certain differential system of equations are also investigated. Contents: Preface; Integral Inequalities of Gronwall Type; Inequalities for Kernels of (L)-Type; Applications to Integral Equations; Applications to Differential Equations; Index.
Inequalities of Ostrowski and Trapezoidal Type for Functions of Selfadjoint Operators on Hilbert Spaces presents recent results concerning Ostrowski and Trapezoidal type inequalities for continuous functions of bounded Selfadjoint operators on complex Hilbert spaces. The first chapter recalls some fundamental facts concerning bounded Selfadjoint operators on complex Hilbert spaces. The generalized Schwarz’s inequality for positive Selfadjoint operators as well as some results for the spectrum of this class of operators are presented. The author also introduces and explores the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators that will ...
An authoritative text that presents the current problems, theories, and applications of mathematical analysis research Mathematical Analysis and Applications: Selected Topics offers the theories, methods, and applications of a variety of targeted topics including: operator theory, approximation theory, fixed point theory, stability theory, minimization problems, many-body wave scattering problems, Basel problem, Corona problem, inequalities, generalized normed spaces, variations of functions and sequences, analytic generalizations of the Catalan, Fuss, and Fuss–Catalan Numbers, asymptotically developable functions, convex functions, Gaussian processes, image analysis, and spectral analysis...
"The main aim of this book is to present several results related to functions of unitary operators on complex Hilbert spaces obtained, by the author in a sequence of recent research papers. The fundamental tools to obtain these results are provided by some new Riemann-Stieltjes integral inequalities of continuous integrands on the complex unit circle and integrators of bounded variation. All the results presented are completely proved and the original references where they have been firstly obtained are mentioned Intended for use by both researchers in various fields of Linear Operator Theory and Mathematical Inequalities, as well as by postgraduate students and scientists applying inequalities in their specific areas. Provides new emphasis to mathematical inequalities, approximation theory and numerical analysis in a simple, friendly and well-digested manner"--
Advanced Topics in Mathematical Analysis is aimed at researchers, graduate students, and educators with an interest in mathematical analysis, and in mathematics more generally. The book aims to present theory, methods, and applications of the selected topics that have significant, useful relevance to contemporary research.
A variety of modern research in analysis and discrete mathematics is provided in this book along with applications in cryptographic methods and information security, in order to explore new techniques, methods, and problems for further investigation. Distinguished researchers and scientists in analysis and discrete mathematics present their research. Graduate students, scientists and engineers, interested in a broad spectrum of current theories, methods, and applications in interdisciplinary fields will find this book invaluable.
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
The theory of Hilbert spaces plays a central role in contemporary mathematics with numerous applications for Linear Operators, Partial Differential Equations, in Nonlinear Analysis, Approximation Theory, Optimisation Theory, Numerical Analysis, Probability Theory, Statistics and other fields. The Schwarz, triangle, Bessel, Gram and most recently, Grüss type inequalities have been frequently used as powerful tools in obtaining bounds or estimating the errors for various approximation formulae occurring in the domains mentioned above. Therefore, any new advancement related to these fundamental facts will have a flow of important consequences in the mathematical fields where these inequalities have been used before.
Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.