You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
This book constitutes the refereed proceedings of the 21st International Conference on Parallel and Distributed Computing, Euro-Par 2015, held in Vienna, Austria, in August 2015. The 51 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 190 submissions. The papers are organized in the following topical sections: support tools and environments; performance modeling, prediction and evaluation; scheduling and load balancing; architecture and compilers; parallel and distributed data management; grid, cluster and cloud computing; distributed systems and algorithms; parallel and distributed programming, interfaces and languages; multi- and many-core programming; theory and algorithms for parallel computation; numerical methods and applications; and accelerator computing.
This book gives an introduction to the basic theory of stochastic calculus and its applications. Examples are given throughout the text, in order to motivate and illustrate the theory and show its importance for many applications in e.g. economics, biology and physics. The basic idea of the presentation is to start from some basic results (without proofs) of the easier cases and develop the theory from there, and to concentrate on the proofs of the easier case (which nevertheless are often sufficiently general for many purposes) in order to be able to reach quickly the parts of the theory which is most important for the applications. For the 6th edition the author has added further exercises and, for the first time, solutions to many of the exercises are provided. This corrected 6th printing of the 6th edition contains additional corrections and useful improvements, based in part on helpful comments from the readers.
Domain decomposition is an active research area concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models of natural and engineered systems. The present volume sets forth new contributions in areas of numerical analysis, computer science, scientific and industrial applications, and software development.
Those interested in state of the art in computational fluid dynamics will find this publication a valuable source of reference. The contributions are drawn from The International Conference on Computational Fluid Dynamics (ICCFD) held in 2004. The conference is staged every two years and brings together physicists, mathematicians and engineers who review and share recent advances in mathematical and computational techniques for modeling fluid dynamics.
This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.
Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Int...
This book gathers a selection of invited and contributed lectures from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) held in Lausanne, Switzerland, August 26-30, 2013. It provides an overview of recent developments in numerical analysis, computational mathematics and applications from leading experts in the field. New results on finite element methods, multiscale methods, numerical linear algebra and discretization techniques for fluid mechanics and optics are presented. As such, the book offers a valuable resource for a wide range of readers looking for a state-of-the-art overview of advanced techniques, algorithms and results in numerical mathematics and scientific computing.
Imagine mathematics, imagine with the help of mathematics, imagine new worlds, new geometries, new forms. This book is intended to contribute to grasping how much that is interesting and new is happening in the relationships between mathematics, imagination and culture. With a look at the past, at figures and events, that help to understand the phenomena of today. It is no coincidence that this volume contains an homage to the great Italian artist of the 1700s, Andrea Pozzo, and his perspective views. Theatre, art and architecture are the topics of choice, along with music, literature and cinema. No less important are applications of mathematics to medicine and economics. The treatment is rigorous but captivating, detailed but full of evocations, an all-embracing look at the world of mathematics and culture
This volume contains twenty refereed papers presented at the 4th Seminar on Stochastic Processes, Random Fields and Applications, which took place in Ascona, Switzerland, from May 2002. The seminar focused mainly on stochastic partial differential equations, stochastic models in mathematical physics, and financial engineering. The book will be a valuable resource for researchers in stochastic analysis and professionals interested in stochastic methods in finance and insurance.