You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Introduction to Statistics Using R is organized into 13 major chapters. Each chapter is broken down into many digestible subsections in order to explore the objectives of the book. There are many real-life practical examples in this book and each of the examples is written in R codes to acquaint the readers with some statistical methods while simultaneously learning R scripts.
There is only a very limited number of physical systems that can be exactly described in terms of simple analytic functions. There are, however, a vast range of problems which are amenable to a computational approach. This book provides a concise, self-contained introduction to the basic numerical and analytic techniques, which form the foundations of the algorithms commonly employed to give a quantitative description of systems of genuine physical interest. The methods developed are applied to representative problems from classical and quantum physics.
This book is aimed to help instructional designers, science game designers, science faculty, lab designers, and content developers in designing interactive learning experiences using emerging technologies and cyberlearning. The proposed solutions are for undergraduate and graduate scientific communication, engineering courses, scientific research communication, and workforce training. Reviewing across the science education literature reveals various aspects of unresolved challenges or inabilities in the visualization of scientific concepts. Visuospatial thinking is the fundamental part of learning sciences; however, promoting spatial thinking has not been emphasized enough in the educational...
As long as humans have existed on the planet, they have looked at the world around them and wondered about much of what they saw. This book covers 21 different phenomena that have been observed in nature and puzzled about for decades.Only recently, with the development of the microscopes and other tools that allow us to study, evaluate, and test these observed phenomena at the molecular and atomic scale, have researchers been able to understand the science behind these observations. From the strength of a marine sponge found at the depths of the oceans, to the insect-hydroplaning surface of the edge of a plant, to the intricacies of the eyes of a moth, nanotechnology has allowed science to define and understand these amazing capabilities. In many cases, this new understanding has been applied to products and applications that benefit humans and the environment. For each of the five ecosystems— the ocean, insects, flora, fauna, and humans—the observations, study and understanding, and applications will be covered. The relationship between the more easily observed macro level and understanding what is found at the nanoscale will also be discussed.
This book is intended for undergraduate students of Mathematics, Statistics, and Physics who know nothing about Monte Carlo Methods but wish to know how they work. All treatments have been done as much manually as is practicable. The treatments are deliberately manual to let the readers get the real feel of how Monte Carlo Methods work. Definite integrals of a total of five functions (), namely Sin(), Cos(), e, loge(), and 1/(1+2), have been evaluated using constant, linear, Gaussian, and exponential probability density functions (). It is shown that results agree with known exact values better if () is proportional to (). Deviation from the proportionality results in worse agreement. This b...
This book is designed to be used in an introductory sophomore-level undergraduate course in chemical engineering, civil engineering, industrial engineering, chemistry, and/or industrial chemistry. Senior-level students in resource development, soil science, and geology might also find this book useful. In addition, it is our hope that even advanced mathematics-oriented high school seniors might find the material easy to master as well. This book emphasizes concepts, definitions, chemical equations, and descriptions with which some chemical science professionals struggle. It stresses the importance of maintaining uniformly high standards in pure chemical science and manufacturing technology while still keeping in mind that procedures that might seem strange also yield results that prove effective.
Early in the 20th century, our world was small and closed with boundaries. And, there were no appreciable changes. Therefore, we could foresee the future. These days, however, we could apply mathematical rationality and solve problems without any difficulty. As our world began to expand rapidly and boundaries disappeared, the problem of bounded rationality emerged. Engineeres put forth tremendous effort to overcome this difficulty and succeeded in expanding the bounds of mathematical rationality, thereby establishing the ""Controllable World."" However, our world continues to expand. Therefore such an approach can no longer be applied. We have no other choice than ""satisficing"" (Herbert A....
This book introduces integrals, the fundamental theorem of calculus, initial value problems, and Riemann sums. It introduces properties of polynomials, including roots and multiplicity, and uses them as a framework for introducing additional calculus concepts including Newton's method, L'Hôpital's Rule, and Rolle's theorem. Both the differential and integral calculus of parametric, polar, and vector functions are introduced. The book concludes with a survey of methods of integration, including u-substitution, integration by parts, special trigonometric integrals, trigonometric substitution, and partial fractions.
This text provides an introduction to the applications and implementations of partial differential equations. The content is structured in three progressive levels which are suited for upper–level undergraduates with background in multivariable calculus and elementary linear algebra (chapters 1–5), first– and second–year graduate students who have taken advanced calculus and real analysis (chapters 6-7), as well as doctoral-level students with an understanding of linear and nonlinear functional analysis (chapters 7-8) respectively. Level one gives readers a full exposure to the fundamental linear partial differential equations of physics. It details methods to understand and solve th...
Introduction to Engineering Design is a practical, straightforward workbook designed to systematize the often messy process of designing solutions to open-ended problems. IFrom learning about the problem to prototyping a solution, this workbook guides developing engineers and designers through the iterative steps of the engineering design process. Created in a freshman engineering design course over ten years, this workbook has been refined to clearly guide students and teams to success. Together with a series of instructional videos and short project examples, the workbook has space for teams to execute the engineering design process on a challenge of their choice. Designed for university students as well as motivated learners, the workbook supports creative students as they tackle important problems. IIntroduction to Engineering Design is designed for educators looking to use project-based engineering design in their classroom.