You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is centered on the two minicourses conducted by C Liverani (Rome) and J Sjoestrand (Paris) on the return to equilibrium in classical statistical mechanics and the location of quantum resonances via semiclassical analysis, respectively. The other contributions cover related topics of classical and quantum mechanics, such as scattering theory, classical and quantum statistical mechanics, dynamical localization, quantum chaos, ergodic theory and KAM techniques.
Return to equilibrium in classical and quantum systems / Carlangelo Liverani -- Quantum resonances and trapped trajectories / Johannes Sjostrand -- Return to thermal equilibrium in quantum statistical mechanics / Volker Bach -- Small oscillations in some nonlinear PDE's / Dario Bambusi and Simone Paleari -- The semi-classical Van-Vleck Formula. Application to the Aharonov-Bohm effect / Jean-Marie Bily and Didier Robert -- Fractal dimensions and quantum evolution associated with sparse potential Jacobi matrices / Jean-Michel Combes and Giorgio Mantica -- Infinite step billiards / Mirko Degli Esposti -- Semiclassical expansion for the thermodynamic limit of the ground state energy of Kac's ope...
This selection of reviews and papers is intended to stimulate renewed reflection on the fundamental and practical aspects of probability in physics. While putting emphasis on conceptual aspects in the foundations of statistical and quantum mechanics, the book deals with the philosophy of probability in its interrelation with mathematics and physics in general. Addressing graduate students and researchers in physics and mathematics togehter with philosophers of science, the contributions avoid cumbersome technicalities in order to make the book worthwhile reading for nonspecialists and specialists alike.
Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had...
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.
Nowadays we are facing numerous and important imaging problems: nondestructive testing of materials, monitoring of industrial processes, enhancement of oil production by efficient reservoir characterization, emerging developments in noninvasive imaging techniques for medical purposes - computerized tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), X-ray and ultrasound tomography, etc. In the CIME Summer School on Imaging (Martina Franca, Italy 2002), leading experts in mathematical techniques and applications presented broad and useful introductions for non-experts and practitioners alike to many aspects of this exciting field. The volume contains part of the above lectures completed and updated by additional contributions on other related topics.
A rigorous mathematical treatment of the properties of composite materials has been made possible by recent mathematical results in the fields of partial differential equations and the calculus of variations. The progress in the mathematical models for composite media has led to a deeper understanding of the overall behaviour of composite structures and to significant applications in physics and engineering, including a new approach to optimal design problems.Many new, relevant results are presented in this volume, which contains 16 invited papers from the Second Workshop on Composite Media and Homogenization Theory held at the International Centre for Theoretical Physics in Trieste, Italy, from September 20 to October 1, 1993. Topics include homogenization of problems singularly depending on small or large parameters, homogenization of nonlinear problems, optimal bounds for effective moduli, asymptotic analysis of problems in perforated domains, laminate structures in phase transitions, optimal design and relaxation. Mathematicians and engineers interested in mathematical models of composite materials will find this book to be an important reference.
Determinism, holism and complexity: three epistemological attitudes that have easily identifiable historical origins and developments. Galileo believed that it was necessary to "prune the impediments" to extract the mathematical essence of physical phenomena, to identify the math ematical structures representing the underlying laws. This Galilean method was the key element in the development of Physics, with its extraordinary successes. Nevertheless the method was later criticized because it led to a view of nature as essentially "simple and orderly", and thus by choosing not to investigate several charac teristics considered as an "impediment", several essential aspects of the phenomenon un...
This volume contains lectures delivered at the International Conference Operator Theory and its Applications in Mathematical Physics (OTAMP 2004), held at the Mathematical Research and Conference Center in Bedlewo near Poznan, Poland. The idea behind these lectures was to present interesting ramifications of operator methods in current research of mathematical physics.