Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Learning Classifier Systems
  • Language: en
  • Pages: 238

Learning Classifier Systems

  • Type: Book
  • -
  • Published: 2003-11-24
  • -
  • Publisher: Springer

The 5th International Workshop on Learning Classi?er Systems (IWLCS2002) was held September 7–8, 2002, in Granada, Spain, during the 7th International Conference on Parallel Problem Solving from Nature (PPSN VII). We have included in this volume revised and extended versions of the papers presented at the workshop. In the ?rst paper, Browne introduces a new model of learning classi?er system, iLCS, and tests it on the Wisconsin Breast Cancer classi?cation problem. Dixon et al. present an algorithm for reducing the solutions evolved by the classi?er system XCS, so as to produce a small set of readily understandable rules. Enee and Barbaroux take a close look at Pittsburgh-style classi?er sy...

Learning Classifier Systems
  • Language: en
  • Pages: 344

Learning Classifier Systems

  • Type: Book
  • -
  • Published: 2003-06-26
  • -
  • Publisher: Springer

Learning Classifier Systems (LCS) are a machine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book provides a unique survey of the current state of the art of LCS and highlights some of the most promising research directions. The first part presents various views of leading people on what learning classifier systems are. The second part is devoted to advanced topics of current interest, including alternative representations, methods for evaluating rule utility, and extensions to existing classifier system models. The final part is dedicated to promising applications in areas like data mining, medical data analysis, economic trading agents, aircraft maneuvering, and autonomous robotics. An appendix comprising 467 entries provides a comprehensive LCS bibliography.

Advances in Learning Classifier Systems
  • Language: en
  • Pages: 270

Advances in Learning Classifier Systems

  • Type: Book
  • -
  • Published: 2003-07-31
  • -
  • Publisher: Springer

Learning classi er systems are rule-based systems that exploit evolutionary c- putation and reinforcement learning to solve di cult problems. They were - troduced in 1978 by John H. Holland, the father of genetic algorithms, and since then they have been applied to domains as diverse as autonomous robotics, trading agents, and data mining. At the Second International Workshop on Learning Classi er Systems (IWLCS 99), held July 13, 1999, in Orlando, Florida, active researchers reported on the then current state of learning classi er system research and highlighted some of the most promising research directions. The most interesting contri- tions to the meeting are included in the book Learning Classi er Systems: From Foundations to Applications, published as LNAI 1813 by Springer-Verlag. The following year, the Third International Workshop on Learning Classi er Systems (IWLCS 2000), held September 15{16 in Paris, gave participants the opportunity to discuss further advances in learning classi er systems. We have included in this volume revised and extended versions of thirteen of the papers presented at the workshop.

Applications of Learning Classifier Systems
  • Language: en
  • Pages: 309

Applications of Learning Classifier Systems

  • Type: Book
  • -
  • Published: 2012-08-13
  • -
  • Publisher: Springer

The field called Learning Classifier Systems is populated with romantics. Why shouldn't it be possible for computer programs to adapt, learn, and develop while interacting with their environments? In particular, why not systems that, like organic populations, contain competing, perhaps cooperating, entities evolving together? John Holland was one of the earliest scientists with this vision, at a time when so-called artificial intelligence was in its infancy and mainly concerned with preprogrammed systems that didn't learn. that, like organisms, had sensors, took Instead, Holland envisaged systems actions, and had rich self-generated internal structure and processing. In so doing he foresaw a...

Agent Systems in Electronic Business
  • Language: en
  • Pages: 407

Agent Systems in Electronic Business

  • Type: Book
  • -
  • Published: 2007-11-30
  • -
  • Publisher: IGI Global

"This book delivers definitive research on the use of agent technologies to advance the practice of electronic business in today's organizations, targeting the needs of enterprises in open and dynamic business opportunities to incorporate skilled use of multiple independent information systems. It clearly articulates the stages involved in developing agent-based e-business systems"--Provided by publisher.

Foundations of Genetic Algorithms 2001 (FOGA 6)
  • Language: en
  • Pages: 351

Foundations of Genetic Algorithms 2001 (FOGA 6)

  • Type: Book
  • -
  • Published: 2001-07-18
  • -
  • Publisher: Elsevier

Foundations of Genetic Algorithms, Volume 6 is the latest in a series of books that records the prestigious Foundations of Genetic Algorithms Workshops, sponsored and organised by the International Society of Genetic Algorithms specifically to address theoretical publications on genetic algorithms and classifier systems. Genetic algorithms are one of the more successful machine learning methods. Based on the metaphor of natural evolution, a genetic algorithm searches the available information in any given task and seeks the optimum solution by replacing weaker populations with stronger ones. - Includes research from academia, government laboratories, and industry - Contains high calibre papers which have been extensively reviewed - Continues the tradition of presenting not only current theoretical work but also issues that could shape future research in the field - Ideal for researchers in machine learning, specifically those involved with evolutionary computation

Soft Computing in Engineering Design and Manufacturing
  • Language: en
  • Pages: 462

Soft Computing in Engineering Design and Manufacturing

Soft Computing has emerged as an important approach towards achieving intelligent computational paradigms where key elements are learning from experience in the presence of uncertainties, fuzzy belief functioos, and ·evolutioo of the computing strategies of the learning agent itself. Fuzzy, neural and evolutionary computing are the three major themes of soft computing. The book presents original research papers dealing with the theory of soft computing and its applicatioos in engineering design and manufacturing. The methodologies have been applied to a large variety of real life problems. Applicatioo of soft computing has provided the opportunity to integrate human like 'vagueness' and rea...

Learning Classifier Systems
  • Language: en
  • Pages: 316

Learning Classifier Systems

This book constitutes the thoroughly refereed joint post-conference proceedings of two consecutive International Workshops on Learning Classifier Systems that took place in Seattle, WA, USA in July 2006, and in London, UK, in July 2007 - all hosted by the Genetic and Evolutionary Computation Conference, GECCO. The 14 revised full papers presented were carefully reviewed and selected from the workshop contributions. The papers are organized in topical sections on knowledge representation, analysis of the system, mechanisms, new directions, as well as applications.

Accidents in North American Mountaineering 1994
  • Language: en
  • Pages: 82

Accidents in North American Mountaineering 1994

None

Talking Affirmative Action
  • Language: en
  • Pages: 238

Talking Affirmative Action

Talking Affirmative Action takes a fresh look at affirmative action from the perspective of young white men on both sides of the issue. Through a nuanced examination of how advocates' and opponents' viewpoints overlap and diverge, Lipson links the controversy over affirmative action to perennial tensions between competing models of individualism, and of communitarian accountability, at the core of America's 'traditional values.' The book concludes with some provocative commentary on the future of affirmative action in the wake of the Supreme Court's 2003 decisions in favor of 'holistic assessment.'