You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Spintronics, being a part of electronics, is under intense development for about forty years and mainly concerns transport of electronics spin in low-dimensional structures. This field, based on often difficult theoretical concepts of quantum physics, has surprisingly strong and real technological and application consequences. Thus, spintronic solutions concern memory systems, information processing devices and are used as sensors to detect variety of physical fields. The early development of this field can be associated with the names of such scientists as: E. I. Rashba, A. Fert, P. Grünberg, J. Barnaś, B. Hillebrands, G. Güntherodt, I. K. Schuller, M. Grimsditch, A. Hoffman, P. Vavassor...
This book presents basic knowledge on the examination of textile materials, from fibers to yarns and knitted or woven fabrics, using mathematical and physical methods. Besides typical textile test procedures, defined by well-known standards, the book aims at showing new ways to examine textile materials and giving an overview of the possibilities as well as problems occurring when methods from other areas are transferred into the examination of textiles. The contents range from apparently simple measurements, such as resistance of conductive coatings on woven fabrics, to diffraction measurements on woven fabrics, to optical examination of knitted fabrics by mathematical approaches to study yarn hairiness and cover factor.
The sensing, adapting, responding, multifunctionality, low energy, small size and weight, ease of forming, and low-cost attributes of smart textiles and their multidisciplinary scope offer numerous end uses in medical, sports and fitness, military, fashion, automotive, aerospace, the built environment, and energy industries. The research and development on these new and high-value materials cross scientific boundaries, redefine material science design and engineering, and enhance quality of life and our environment. “Novel Smart Textiles” is a focused Special Issue that reports the latest research of this field and facilitates dissemination, networking, discussion, and debate.
Presents technologies and key concepts to produce suitable smart materials and intelligent structures for sensing, information and communication technology, biomedical applications (drug delivery, hyperthermia therapy), self-healing, flexible memories and construction technologies. Novel developments of environmental friendly, cost-effective and scalable production processes are discussed by experts in the field.
The book provides an up-to-date account of the various techniques of fabrication & functionalization of electrospun nanofibers as well as recent advancements. An overview of the advanced applications of such techniques in different areas is also presented. Both experimental and theoretical approaches related to electrospun nanofibers are covered along with a discussion on the inherent properties of electrospun nanofibers. Therefore, this book provides a unique resource not only to established researchers but also newcomers starting out in this field.
The electrospinning method has the unique ability to produce structured polymeric fibers on the micro or nano scale and to generate novel materials for food and healthcare purposes. The potential of electrospun nanofibers for human healthcare applications is promising, for example, in tissue/organ repair and regeneration, in medical diagnostics and instrumentation, and as vectors to deliver drugs and therapeutics, as biocompatible and biodegradable medical implant devices, as protective fabrics against environmental and infectious agents in hospitals and general surroundings. Furthermore, considerable effort has been directed toward developing scaffolds using biodegradable and biocompatible ...
This book covers the remarkable progress in the field of electrospun nanofibrous materials synthesis that has been made in recent years for clean water production. The goal is to offer comprehensive and substantial contents in each chapter, entailing the electrospinning principle, novel materials and methods, properties, characterization, and applications, such as adsorption, catalysis, and membranes. The book is instrumental in terms of showing the scale-up production of desired fibers that ensure the control of the structure–properties relationship for developing effective water treatment technologies. Every chapter ends with a special section for highlighting research challenges and bre...
None