You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Appendix A: Semiclassical approximation
Suitable for advanced undergraduate and graduate students of engineering, physics, and mathematics and scientific researchers of all types, this is the first authoritative text on invisibility and the science behind it. It introduces the mathematical foundations of differential geometry and demonstrates practical applications from general relativity to electrical and optical engineering. More than 100 full-color illustrations, plus exercises with solutions. 2010 edition.
Covering some of the most exciting trends in quantum optics - quantum entanglement, teleportation, and levitation - this textbook is ideal for advanced undergraduate and graduate students. The book journeys through the vast field of quantum optics following a single theme: light in media. A wide range of subjects are covered, from the force of the quantum vacuum to astrophysics, from quantum measurements to black holes. Ideas are explained in detail and formulated so that students with little prior knowledge of the subject can follow them. Each chapter ends with several short questions followed by a more detailed homework problem, designed to test the reader and show how the ideas discussed can be applied. Solutions to homework problems are available at www.cambridge.org/9780521869782.
Covering some of the most exciting trends in quantum optics, this textbook is ideal for advanced undergraduate and graduate students. Each chapter ends with short questions and a more detailed homework problem to show how the ideas discussed can be applied. Solutions to homework problems are available at www.cambridge.org/9780521869782.
Invisibility has fascinated people since time immemorial, but only a decade ago did invisibility become a serious subject of scientific investigation. This lively novel, authored by an expert in the field, takes the reader on a journey to fascinating places and - en passant - on an intellectual adventure involving some of the most fascinating subjects of optics. While enjoying the fun and action of a travel story, the reader will gain an accurate notion of the real science of invisibility, of the light and shade of the business of science, as well as glimpses into different cultures. From the first page, you will gradually become immersed in a different world, the world of the science of light. The book includes an appendix providing interested readers with deeper insights into the fundamental physics of space-time, gravity and light.
Over the last few decades, the quantum aspects of light have been explored and major progress has been made in understanding the specific quantum aspects of the interaction between light and matter. The domain of classical optics has recently seen many exciting new developments, especially in the areas of nano-optics, nano-antennas, metamaterials, and optical cloaking. Approaches based on single-molecule detection and plasmonics have provided new avenues for exploring light-matter interaction at the nanometre scale. All these topics have in common a trend to consider and use smaller and smaller objects, down to the micrometre, nanometre, and even atomic range. The summer school held in Les Houches in July 2013 treated all these subjects lying at the frontier between nanophotonics and quantum optics, in a series of lectures given by world experts
Ready to Wear: A Rhetoric of Wearable Computers and Reality-Shifting Media explores how and to what ends wearable inventions and technologies augment or remix reality, as well as the claims used to promote them. As computer components shrink and our mobile culture normalizes, we wear computers on the body to create immersive experiences.
A lively exploration of how invisibility has gone from science fiction to fact Is it possible for something or someone to be made invisible? This question, which has intrigued authors of science fiction for over a century, has become a headline-grabbing topic of scientific research. In this book, science writer and optical physicist Gregory J. Gbur traces the science of invisibility from its sci-fi origins in the nineteenth-century writings of authors such as H. G. Wells and Fitz James O’Brien to modern stealth technology, invisibility cloaks, and metamaterials. He explores the history of invisibility and its science and technology connections, including the discovery of the electromagnetic spectrum, the development of the atomic model, and quantum theory. He shows how invisibility has moved from fiction to reality, and he questions the hidden paths that lie ahead for researchers. This is not only the story of invisibility but also the story of humankind’s understanding of the nature of light itself, and of the many fascinating figures whose discoveries advanced this knowledge.
Invisibility has fascinated people since time immemorial, but only a decade ago did invisibility become a serious subject of scientific investigation. This lively novel, authored by an expert in the field, takes the reader on a journey to fascinating places and - en passant - on an intellectual adventure involving some of the most fascinating subjects of optics. While enjoying the fun and action of a travel story, the reader will gain an accurate notion of the real science of invisibility, of the light and shade of the business of science, as well as glimpses into different cultures. From the first page, you will gradually become immersed in a different world, the world of the science of light. The book includes an appendix providing interested readers with deeper insights into the fundamental physics of space-time, gravity and light.
This book is a comprehensive survey of most of the theoretical and experimental achievements in the field of quantum estimation of states and operations. Albeit still quite young, this field has already been recognized as a necessary tool for research in quantum optics and quantum information, beyond being a fascinating subject in its own right since it touches upon the conceptual foundations of quantum mechanics. The book consists of twelve extensive lectures that are essentially self-contained and modular, allowing combination of various chapters as a basis for advanced courses and seminars on theoretical or experimental aspects. The last two chapters, for instance, form a self-contained exposition on quantum discrimination problems. The book will benefit graduate students and newcomers to the field as a high-level but accessible textbook, lecturers in search for advanced course material and researchers wishing to consult a modern and authoritative source of reference.