You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Rather different problems can be lumped together under the general term 'laser control of atoms and molecules'. They include the laser selection of atomic and molecular velocities for the purpose of Doppler-free spectroscopy, laser control of the position and velocity of atoms (i.e. laser trapping and cooling of atoms), and laser control of atomic and molecular processes (ionization, dissociation) with a view of detecting single atoms and molecules and particularly separating isotopes and nuclear isomers. Over the last decades the principal problems posed have been successfully solved, and many of them have evolved remarkably in the subsequent investigations of the international research com...
Comprehensive single source for the theory on and status of current research into laser light pressure on atoms and atomic particles. Part I presents the fundamentals of the theory of resonance light pressure, analyzes the basic relations of the radiatio9n force acting on atomic particles, discusses the properties of light pressure for fields of spatial and time structure. Part II describes investigations into the control of atoms and atomic ions by laser pressure, the cooling of atomic beams, and localized atomic ions. It also describes applications of cooled atoms and ions in atomic physics and spectroscopy.
The laser as a source of coherent optical radiation has made it possible to investigate nonlinear interaction of optical radiation with atoms and mole cules. Its availability has given rise to new research fields, such as non linear optics, laser spectroscopy, laser photochemistry, that lie at the boundary between quantum electronics and physical optics, optical spectros copy and photochemistry, respectively. The use of coherent optical radiation in each of these fields has led to the discovery of qualitatively ne\~ effects and possibilities; in particular, some rather subtle effects of interaction between highly monochromatic light and atoms and molecules, in optical spec troscopy, have for...
This book highlights the latest experimental and theoretical developments in the field of femtochemistry, with papers describing the physics and chemistry of ultrafast processes in small molecules, complex molecular systems, clusters, biological systems, solids, matrices, liquids and at surfaces and interfaces. The recent developments in frequency-domain studies of femtodynamics are also presented. In addition, the latest achievements in femtosecond control of chemical reactions are presented, together with the newest techniques in real-time probing of reactions such as ultrafast x-ray or electron diffraction. The papers are rich in references giving a clearcut state-of-the-art of the topics being discussed. The book should be a valuable tool to all persons in the field and to young scientists.Contributors include: A H Zewail, J Jortner, V S Letokhov, J Manz, R S Berry, C Wittig, K B Eisenthal, A W Castleman Jr., J T Hynes, W H Gadzuk, R Kosloff, S Mukamel, K R Wilson; G Fleming, D Wiersma, K Yoshihara, V Sundström, A Apkarian, N Scherer, A Myers, R Schinke, J R Huber, R B Gerber, G Gerber and P M Champion.
The birth of quantum electronics in the middle of the 20th century and the subsquent discovery of the laser led to new trends in physics and a number of photonic technolgies. This volume is dedicated to Peter Franken, a pioneer of nonlinear optics, and includes papers by the founders of quantum electronics, Aleksandr Prokhorov, Nicolaas Blombergen, and Norman Ramsey. The topics covered range from astronomy to nuclear and semiconductor physics, and from fundamental problems in quantum mechanics to applications in novel laser materials and nanoscience.
The NATO Advanced Study Institute "Biomedical Optical Instrumentation and Laser Assisted Biotechnology" was held November 10-22, 1995 in Erice, Sicily. This was the 19 th conference organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Center for Scientific Culture. The contributions presented at the Institute are written as extended, review-like papers to provide a broad and representative coverage of the fields of laser techniques, optoelectronics systems for medical diagnosis, and light and laser applications to Biology and Medicine. The aim of the Institute was to bring together some of the world's acknowledged scientists and clinicians...
Laser Photoionization Spectroscopy discusses the features and the development of photoionization technique. This book explores the progress in the application of lasers, which improve the characteristics of spectroscopic methods. Organized into 12 chapters, this book starts with an overview of the fundamentals of the method for atoms and molecules. This text then examines the photoionization spectroscopy, which is based on the laser resonant excitation of particles into high-lying quantum states that are easy to detect by ionization. Other chapters explain the various basic schemes of multistep excitation, which can be used for resonance photoionization of molecules. This book discusses as well the different applications of the resonance photoionization technique in atomic and molecular spectroscopy. The final chapter considers the two well-known types of microscopy, namely, wave and corpuscular. This book is a valuable resource for chemists, physicists, analysts, and geochemists who are interested in laser spectroscopy techniques to solve nontrivial problems.