You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is dedicated to the study of the theory of electromagnetism. It is not intended to cover all aspects of the topic, but instead will give a certain perspective, that of its relationship with special relativity. Indeed, special relativity is intrinsic to electromagnetism; thus, this paradigm eliminates some false paradoxes. Electromagnetism also discusses the limit of classical mechanics, and covers problems that arise when phenomena related to the propagation of electromagnetic waves are encountered. These are problems that even the greatest scientists of the last two hundred years have not been able to entirely overcome. This book is directed towards the undergraduate level, and will also support the readers as they move on to advanced technical training, such as an engineering or master's degree.
This book presents a collection of independent mathematical studies, describing the analytical reduction of complex generic problems in the theory of scattering and propagation of electromagnetic waves in the presence of imperfectly conducting objects. Their subjects include: a global method for scattering by a multimode plane; diffraction by an impedance curved wedge; scattering by impedance polygons; advanced properties of spectral functions in frequency and time domains; bianisotropic media and related coupling expressions; and exact and asymptotic reductions of surface radiation integrals. The methods developed here can be qualified as analytical when they lead to exact explicit expressions, or semi-analytical when they drastically reduce the mathematical complexity of studied problems. Therefore, they can be used in mathematical physics and engineering to analyse and model, but also in applied mathematics to calculate the scattered fields in electromagnetism for a low computational cost.
Subtractive sound synthesis has been one of the most widely used techniques in electronic music and for many analog synthesizers since the early 1960s. It is based on a simple principle, but its operation remains complex, involving many parameters. It can be enriched by a variety of effects that give the sound its authenticity. It does not just imitate musical instruments, but can also transcribe noises present in natural soundscapes, or generate entirely synthetic sounds. Synthesizers and Subtractive Synthesis 1 presents the theoretical basis of a sound phenomenon, the different types of synthesis, the components that are required and present in synthesizers, the working environment specific to the study of subtractive synthesis, and the hardware and software available. After reading the various chapters of this book, readers will have a clear vision of the tools and actions required to grasp the world of subtractive sound.
Capturing, recording and broadcasting the voice is often difficult. Many factors must be taken into account and achieving a true representation is much more complex than one might think. The capture devices such as the position of the singer(s) or narrator(s), the acoustics, atmosphere and equipment are just some of the physical aspects that need to be mastered. Then there is the passage through the analog or digital channel, which disrupts the audio signal, as well as the processes that are often required to enrich, improve or even transform the vocal timbre and tessitura. While in the past these processes were purely material, today digital technologies and software produce surprising resu...
Elastic waves are used in fields as diverse as the non-destructive evaluation of materials, medicine, seismology and telecommunications. Elastic Waves in Solids 1 presents the different modes of propagation of elastic waves in increasingly complex media and structures. It first studies the propagation in an unlimited solid where only the material properties are taken into account. It then analyzes reflection and transmission phenomena at an interface with a fluid or a second solid. It explains the search for propagation modes on a free surface or at the interface between two media. Finally, it proposes a study of the dispersive propagation of elastic waves guided by a plate or a cylinder. This book is intended for students completing a master’s degree in acoustics, mechanics, geophysics or engineering, as well as teachers and researchers in these disciplines.
Capturing, recording and broadcasting the voice is often difficult. Many factors must be taken into account and achieving a true representation is much more complex than one might think. The capture devices such as the position of the singer(s) or narrator(s), the acoustics, atmosphere and equipment are just some of the physical aspects that need to be mastered. Then there is the passage through the analog or digital channel, which disrupts the audio signal, as well as the processes that are often required to enrich, improve or even transform the vocal timbre and tessitura. While in the past these processes were purely material, today digital technologies and software produce surprising resu...
Subtractive sound synthesis is one of the most widely used techniques in electronic music and in many analog synthesizers since the early 1960s. It is based on a simple principle, but its operation is complex, involving many parameters. It can be enhanced by a variety of effects that give the sound its authenticity, and does not simply imitate musical instruments, but can also transcribe noises present in natural soundscapes or generate entirely synthetic sounds. Synthesizers and Subtractive Sound Synthesis 2 presents practical exercises, ranging from the fundamentals to advanced functionalities. Most of the sound effects applicable to subtractive synthesis are covered: vibrato, phaser, reverb, etc. The final chapters deal with polyphony and arpeggiator-sequences.
Acoustics of Fluid Media 1 is intended for undergraduate students and engineering students, as well as graduate students and professionals in the industry who are increasingly faced with the need to consider acoustic constraints in the design of new products. The physical principles and theoretical foundations of acoustics in fluids are first developed, including reflection and refraction of plane and spherical waves. The book then introduces notions of signal processing applied to sound waves, followed by radiation from surface or volume acoustic sources and the use of Green’s functions, as well as the description of diffraction and scattering phenomena. The final chapters are devoted to sound propagation in ducts and room acoustics. Each chapter is accompanied by a limited number of exercises, ranging from the simple application of formulas to problems requiring a more advanced theoretical analysis or a numerical solution. Throughout the book, the theoretical results are illustrated with numerous figures obtained from measurements or numerical simulations resulting from the evaluation of complex formulas or from the use of a finite element solver.
Elastic waves are used in fields as diverse as the non-destructive evaluation of materials, medicine, seismology and telecommunications. Elastic Waves in Solids 2 analyzes the radiation, scattering and generation of these waves. It studies the emission of bulk or surface waves from sources localized on the surface of an isotropic or anisotropic solid. It then examines the scattering of a longitudinal or transverse elastic wave by one or more cylindrical or spherical heterogeneities. Finally, it explores the methods and devices used to generate and detect elastic waves, using the piezoelectric effect or the interaction with a laser beam. Accompanying figures illustrate these properties, and the text provides the orders of magnitude of some characteristic parameters. This book is intended for students completing a master’s degree in acoustics, mechanics, geophysics or engineering, as well as teachers and researchers in these disciplines.