You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This comprehensive volume is a graduate-level text in human biodynamics, written in the unified categorical language of modern differential geometry and topology. Combining mathematics, physics and robotics with human physiology, this is the first book that describes all levels of human biodynamics, from musculo-skeletal mechanics to the higher brain functions. The book develops and uses a variety of research methods, ranging from chaos theory and Haken's synergetics, through quantum mechanics, to nonlinear control and artificial intelligence, to provide the means to understand, predict and control the behavior of human-like systems in their full neuro-musculo-skeletal complexity. The applications of this unique scientific methodology range from prediction of human neuro-musculo-skeletal injuries to brain-like control of humanoid robots.
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics...
Geometrical Dynamics of Complex Systems is a graduate?level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By?complexsystems?,inthis book are meant high?dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds:engineering,physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi?input multi?output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular ?soft complexity philosophy?, we ra...
This graduate–level textbook is devoted to understanding, prediction and control of high–dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high–dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincaré’s 3-body problem, high-tech Josephson junctions, and more.
Readers learn to predict and control low- and high-dimensional as well as continuous- and discrete-time nonlinear systems dynamics in complex variables. In the final chapter, all the previously developed methods are used to present the "Holy Grail" of modern physical and cosmological science, the search for the "theory of everything" and the "true" cosmological dynamics.
This is a graduate–level monographic textbook in the field of Computational Intelligence. It presents a modern dynamical theory of the computational mind, combining cognitive psychology, artificial and computational intelligence, and chaos theory with quantum consciousness and computation. The book introduces to human and computational mind, comparing and contrasting main themes of cognitive psychology, artificial and computational intelligence.
Will be invaluable to researchers who are interested in emerging areas of the field.
This volume covers a diverse collection of topics dealing with some of the fundamental concepts and applications embodied in the study of nonlinear dynamics. Each of the 15 chapters contained in this compendium generally fit into one of five topical areas: physics applications, nonlinear oscillators, electrical and mechanical systems, biological and behavioral applications or random processes. The authors of these chapters have contributed a stimulating cross section of new results, which provide a fertile spectrum of ideas that will inspire both seasoned researches and students.
This book is a fascinating window on the evolution of teaching and learning paradigms in intelligent environments. It presents the latest ideas coming out of educational computing research. The three Australian authors include a number of chapters on issues of real relevance to today’s teaching practice, including an introduction to the evolution of teaching and learning paradigms; why designers cannot be agnostic about pedagogy, and the influence of constructivist thinking in design of e-learning for HE.
Geometrical Dynamics of Complex Systems is a graduate-level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By'complexsystems', inthis book are meant high-dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds: engineering, physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi-input multi-output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular 'soft complexity philosophy', we...