You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
“Number Theory and Related Fields” collects contributions based on the proceedings of the "International Number Theory Conference in Memory of Alf van der Poorten," hosted by CARMA and held March 12-16th 2012 at the University of Newcastle, Australia. The purpose of the conference was to promote number theory research in Australia while commemorating the legacy of Alf van der Poorten, who had written over 170 papers on the topic of number theory and collaborated with dozens of researchers. The research articles and surveys presented in this book were written by some of the most distinguished mathematicians in the field of number theory, and articles will include related topics that focus on the various research interests of Dr. van der Poorten.
There is no surprise that arithmetic properties of integral ('whole') numbers are controlled by analytic functions of complex variable. At the same time, the values of analytic functions themselves happen to be interesting numbers, for which we often seek explicit expressions in terms of other 'better known' numbers or try to prove that no such exist. This natural symbiosis of number theory and analysis is centuries old but keeps enjoying new results, ideas and methods.The present book takes a semi-systematic review of analytic achievements in number theory ranging from classical themes about primes, continued fractions, transcendence of π and resolution of Hilbert's seventh problem to some...
This introductory text covers a variety of applications to interest every reader, from researchers to amateur mathematicians.
Students and researchers from all fields of mathematics are invited to read and treasure this special Proceedings. A conference was held 25 –29 September 2017 at Noah’s On the Beach, Newcastle, Australia, to commemorate the life and work of Jonathan M. Borwein, a mathematician extraordinaire whose untimely passing in August 2016 was a sorry loss to mathematics and to so many members of its community, a loss that continues to be keenly felt. A polymath, Jonathan Borwein ranks among the most wide ranging and influential mathematicians of the last 50 years, making significant contributions to an exceptional diversity of areas and substantially expanding the use of the computer as a tool of the research mathematician. The contributions in this commemorative volume probe Dr. Borwein's ongoing legacy in areas where he did some of his most outstanding work: Applied Analysis, Optimization and Convex Functions; Mathematics Education; Financial Mathematics; plus Number Theory, Special Functions and Pi, all tinged by the double prisms of Experimental Mathematics and Visualization, methodologies he championed.
This book is written for undergraduates who wish to learn some basic results in analytic number theory. It covers topics such as Bertrand's Postulate, the Prime Number Theorem and Dirichlet's Theorem of primes in arithmetic progression.The materials in this book are based on A Hildebrand's 1991 lectures delivered at the University of Illinois at Urbana-Champaign and the author's course conducted at the National University of Singapore from 2001 to 2008.
"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.
"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.
PaulErdos ? likedtotalkaboutTheBook,inwhichGodmaintainstheperfect proofsformathematicaltheorems,followingthedictumofG. H. Hardythat there is no permanent place for ugly mathematics. Erdos ? also said that you need not believe in God but, as a mathematician, you should believe in The Book. A few years ago, we suggested to him to write up a ?rst (and very modest) approximation to The Book. He was enthusiastic about the idea and, characteristically, went to work immediately, ?lling page after page with his suggestions. Our book was supposed to appear in March 1998 as a present to Erdos ? ’ 85th birthday. With Paul’s unfortunate death in the summer of 1996, he is not listed as a co-author. I...
This is an autobiography and an exposition on the contributions and personalities of many of the leading researchers in mathematics and physics with whom Dr Krishna Alladi, Professor of Mathematics at the University of Florida, has had personal interaction with for over six decades. Discussions of various aspects of the physics and mathematics academic professions are included.Part I begins with the author's unusual and frequent introductions as a young boy to scientific luminaries like Nobel Laureates Niels Bohr, Murray Gell-Mann, and Richard Feynman, in the company of his father, the scientist Alladi Ramakrishnan. Also in Part I is an exciting account of how the author started his research...
Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory. Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find this volume a valuable resource on new developments in various aspects of number theory.