You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this book is to provide methods and algorithms for the optimization of input signals so as to estimate parameters in systems described by PDE’s as accurate as possible under given constraints. The optimality conditions have their background in the optimal experiment design theory for regression functions and in simple but useful results on the dependence of eigenvalues of partial differential operators on their parameters. Examples are provided that reveal sometimes intriguing geometry of spatiotemporal input signals and responses to them. An introduction to optimal experimental design for parameter estimation of regression functions is provided. The emphasis is on functions hav...
This book constitutes the refereed proceedings of the 8th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2006, held in Zakopane, Poland, in June 2006. The 128 revised contributed papers presented are organized in topical sections on neural networks and their applications, fuzzy systems and their applications, evolutionary algorithms and their applications, rough sets, classification and clustering, image analysis and robotics, bioinformatics and medical applications, various problems of artificial intelligence.
In order to precisely model real-life systems or man-made devices, both nonlinear and dynamic properties need to be taken into account. The generic, black-box model based on Volterra and Wiener series is capable of representing fairly complicated nonlinear and dynamic interactions, however, the resulting identification algorithms are impractical, mainly due to their computational complexity. One of the alternatives offering fast identification algorithms is the block-oriented approach, in which systems of relatively simple structures are considered. The book provides nonparametric identification algorithms designed for such systems together with the description of their asymptotic and computational properties.
This book provides a systematic in-depth analysis of nonparametric regression with random design. It covers almost all known estimates. The emphasis is on distribution-free properties of the estimates.
This book considers a problem of block-oriented nonlinear dynamic system identification in the presence of random disturbances. This class of systems includes various interconnections of linear dynamic blocks and static nonlinear elements, e.g., Hammerstein system, Wiener system, Wiener-Hammerstein ("sandwich") system and additive NARMAX systems with feedback. Interconnecting signals are not accessible for measurement. The combined parametric-nonparametric algorithms, proposed in the book, can be selected dependently on the prior knowledge of the system and signals. Most of them are based on the decomposition of the complex system identification task into simpler local sub-problems by using non-parametric (kernel or orthogonal) regression estimation. In the parametric stage, the generalized least squares or the instrumental variables technique is commonly applied to cope with correlated excitations. Limit properties of the algorithms have been shown analytically and illustrated in simple experiments.
The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for con...
In recent years, the quadcopter has become a popular platform both in research activities and in industrial development. Its success is due to its increased performance and capabilities, where modeling and control synthesis play essential roles. These techniques have been used for stabilizing the quadcopter in different flight conditions such as hovering and climbing. The performance of the control system depends on parameters of the quadcopter which are often unknown and need to be estimated. The common approach to determine such parameters is to rely on accurate measurements from external sources, i.e., a motion capture system. In this work, only measurements from low-cost onboard sensors ...
None