You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This concise, self-contained and cohesive book focuses on commonly used and recently developed methods for designing and analyzing high-throughput screening (HTS) experiments from a statistically sound basis. Combining ideas from biology, computing and statistics, the author explains experimental designs and analytic methods that are amenable to rigorous analysis and interpretation of RNAi HTS experiments. The opening chapters are carefully presented to be accessible both to biologists with training only in basic statistics and to computational scientists and statisticians with basic biological knowledge. Biologists will see how new experiment designs and rudimentary data-handling strategies for RNAi HTS experiments can improve their results, whereas analysts will learn how to apply recently developed statistical methods to interpret HTS experiments.
"This book focuses on commonly used and recently developed methods for designing and analyzing high-throughput screening experiments from a statistically sound basis"--Provided by publisher.
The book addresses the interplay of healthcare and big data management. Thanks to major advances in big data technologies and precision medicine, healthcare is now becoming the new frontier for both scientific research and economic development. This volume covers a range of aspects, including: big data management for healthcare; physiological and gut microbiota – data collection and analysis; big data standardization and ontology; and personal data privacy and systems level modeling in the healthcare context. The book offers a valuable resource for biomedical informaticians, clinicians, health practitioners and researchers alike.
This book is a printed edition of the Special Issue "Evaluation of Systems’ Irregularity and Complexity: Sample Entropy, Its Derivatives, and Their Applications across Scales and Disciplines" that was published in Entropy
Multiscale entropy (MSE) measures to evaluate the complexity of time series by taking into account the multiple time scales in physical systems were proposed in the early 2000s. Since then, these approaches have received a great deal of attention and have been used in a wide range of applications. Multivariate approaches have also been developed. The algorithms for an MSE approach are composed of two main steps: (i) a coarse-graining procedure to represent the system’s dynamics on different scales and (ii) the entropy computation for the original signal and for the coarse-grained time series to evaluate the irregularity for each scale. Moreover, different entropy measures have been associa...
This book compiles and presents new developments in statistical causal inference. The accompanying data and computer programs are publicly available so readers may replicate the model development and data analysis presented in each chapter. In this way, methodology is taught so that readers may implement it directly. The book brings together experts engaged in causal inference research to present and discuss recent issues in causal inference methodological development. This is also a timely look at causal inference applied to scenarios that range from clinical trials to mediation and public health research more broadly. In an academic setting, this book will serve as a reference and guide to a course in causal inference at the graduate level (Master's or Doctorate). It is particularly relevant for students pursuing degrees in statistics, biostatistics, and computational biology. Researchers and data analysts in public health and biomedical research will also find this book to be an important reference.
This book constitutes the refereed proceedings at PAKDD Workshops 2013, affiliated with the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) held in Gold Coast, Australia in April 2013. The 47 revised full papers presented were carefully reviewed and selected from 92 submissions. The workshops affiliated with PAKDD 2013 include: Data Mining Applications in Industry and Government (DMApps), Data Analytics for Targeted Healthcare (DANTH), Quality Issues, Measures of Interestingness and Evaluation of Data Mining Models (QIMIE), Biologically Inspired Techniques for Data Mining (BDM), Constraint Discovery and Application (CDA), Cloud Service Discovery (CloudSD).