You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Immunotherapy is a clinically proven concept to prevent and treat diverse diseases. Therapeutic monoclonal antibodies (mAb) have transformed cancer patient survival and the quality of life for patients with inflammatory and autoimmune diseases. Vaccination with attenuated viruses or microbial virulence factors is a validated strategy to control infectious disease and has eradicated the global pandemic Smallpox infection. Recently, the concept of encoding transgenes, such as the receptor-binding COVID-19 spike protein, cytokines, antibodies, or immunogenic tumor antigens into non-viral or viral vectors has been validated as a powerful means to achieve vaccination for protection against pandemic infections, and cancer immunotherapy respectively. For certain immunotherapeutic targets and mechanisms, vector-based targeting offers distinct advantages over the traditional protein format. For example, in cancer immunotherapy vectorization may enable local delivery, production, and tumor-enriched exposure of powerful immune-modulatory antibodies, for example anti-CTLA-4 or anti-CD28 that are too toxic to allow full therapeutic dosing upon systemic administration.
Gene therapy has expanded rapidly over the last decade. The number of clinical trials reported by 2001 included 532 protocols and 3436 patients. Phase I trials predominate with 359 trials of 1774 patients versus Phase II (57 trials with 507 patients) and Phase III (3 trials of 251 patients). The disease overwhelmingly targeted by gene therapy is cancer: involving 331 trials with 2361 patients. Despite the somewhat disappointing results of clinical trials to date, gene therapy offers tremendous promise for the future of cancer therapy. The area of gene therapy is vast, and both malignant and nonmalignant cells can be targeted. Suicide Gene Therapy: Methods and Reviews covers gene therapy that...
Gene therapy as a treatment for cancer is at a critical point in its evolution. Exciting new developments in gene targeting and vector technology, coupled with results from the first generation of preclinical and clinical studies have led to the design and testing of new therapeutic approaches. The Third Edition of Gene Therapy of Cancer provides crucial updates on the basic and applied sciences of gene therapy. It offers a comprehensive assessment of the field including the areas of suicide gene therapy, oncogene and suppressor gene targeting, immunotherapy, drug resistance gene therapy, and the genetic modification of stem cells. Researchers at all levels of development, from basic laborat...
There hasn’t been a better time to be a drug developer for immune-based therapies than the past couple of decades. We have seen an explosion in immune-based therapies for cancer, autoimmune and infectious diseases, metabolic diseases and diseases and disorders of the nervous system. The modalities of these immune-based therapies span small molecules, biologics, and gene and cell therapeutic approaches. Significant advances have been made in optimizing drug design for its specificity for the target, characterizing the mode of action in in vitro assays, and ensuring safety and manufacturability. However, an area of challenge that remains is identifying animal models for evaluating efficacy and pharmacokinetics/pharmacodynamics relationship that are predictive of drug effects in humans. Discussion on this topic is warranted as examples of failures of translation from animal models to humans provide us an opportunity to learn more about human biology.
The ability to genetically engineer oncolytic viruses in order to minimize side effects and improve the selective targeting of tumor cells has opened up novel opportunities for treating cancer. Understanding the mechanisms involved and the complex interaction between the viruses and the immune system will undoubtedly help guide the development of new strategies. Theranostic biomarkers to monitor these therapies in clinical trials serve an important need in this innovative field and demand further research.
This unique advanced textbook provides a clear and comprehensive overview of gene delivery, gene therapy and genetic pharmacology, with descriptions of the main gene transfer vectors and a set of selected therapeutic applications, along with safety considerations. The second edition features new groundbreaking material on genome editing using the recently discovered CRISPR/Cas9 system and on cancer immunotherapy by CAR-T cells. It also presents the historical milestone of gene therapy application in the field of severe combined immunodeficiency, and other fields of gene therapy and molecular medicine.The use of gene transfer is exponentially growing in the scientific and medical communities ...
" The poetry of the Late Tang often looked backward, and many poets of the period distinguished themselves through the intensity of their retrospective gaze. Chinese poets had always looked backward to some degree, but for many Late Tang poets the echoes and the traces of the past had a singular aura. In this work, Stephen Owen resumes telling the literary history of the Tang that he began in his works on the Early and High Tang. Focusing in particular on Du Mu, Li Shangyin, and Wen Tingyun, he analyzes the redirection of poetry that followed the deaths of the major poets of the High and Mid-Tang and the rejection of their poetic styles. The Late Tang, Owen argues, forces us to change our very notion of the history of poetry. Poets had always drawn on past poetry, but in the Late Tang, the poetic past was beginning to assume the form it would have for the next millennium; it was becoming a repertoire of available choices--styles, genres, the voices of past poets. It was this repertoire that would endure. "
This monograph introduces current genome editing technologies—clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) systems, transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs)—and provides an assessment of the risk of misuse of these technologies based on the following parameters: accessibility, ease of misuse, magnitude of potential harm, and imminence of potential misuse. The findings from this assessment are applied to analyze and evaluate the threat posed by the intentional misuse of genome editing technologies to develop biological weapons. Furthermore, the book discusses the implications of misuse for diffe...